A Simple Virtual Memory Scheme Formalized
in IMPS*

Joshua D. Guttman

The MITRE Corporation

Abstract. In this paper we formalize a simple virtual memory scheme
derived from Mach and Multics. It is represented by state machine op-
erations in IMPS, an Interactive Mathematical Proof System. We prove
that a store with a global page table faithfully refines an abstract ma-
chine in which processes may perform fetch and store operations against
a set of persistent memory objects. Both safety conditions and liveness
conditions are proved. Some fine points treated in the model include: the
finiteness of virtual address spaces and physical store; the ability to map
a portion of a permanent memory object into the address space; initial-
ization of newly allocated memory to zero; and the need for page-aligned
addresses in some operations.

The paper has two main purposes. First, it illustrates how naturally
IMPS can model this sort of problem, can prove the necessary theorems,
and can present the results. Technical details are presented as typeset
automatically by IMPS. Second, it illustrates how virtual memory systems
can be specified and, at least at the first refinement levels, verified. Lower
refinement levels would, however, raise additional issues of concurrency
and of hardware dependencies.

1 Introduction

IMPS, an Interactive Mathematical Proof System [6], aims to provide mechanical
support for traditional methods and activities of mathematics, and for traditional
styles of classical mathematical proof. The bulk of iMPs work has focused on
mathematics [7, 5]. However, the same broadly understandable techniques are
also valuable for formal methods. This paper will illustrate that 1MPS provides
an attractive and flexible modeling framework for formal methods, and that
IMPS provides adequate interactive theorem proving power to expose errors in
specifications and to prove correct refinements.

A second goal is to describe a style in which virtual memory systems can be
specified, and, at least at the highest refinement levels, verified. Our motivation
for doing so derives from a recently begun effort (called VMACH) which is devoted

* Supported by the United States Army CECOM under contract DAAB07-94-C-H601.
The development of IMPS was supported by the MITRE-Sponsored Research pro-
gram. Author’s address: The MITRE Corporation, 202 Burlington Rd, Bedford MA
01730-1420 USA; E-mail: guttman@mitre.org; Telephone: 617-271-2654; Fax: 617-
271-3816.

to specifying and verifying critical subsytems of the Mach microkernel [10]; initial
emphasis is on the Mach virtual memory system. Our reasons for undertaking
this are partly research goals, and partly driven by the applications needs.

The research goal for VMACH is to study techniques for applying formal meth-
ods to portions of complex, multi-threaded software. Mach offers clever optimiza-
tions, such as the copy-on-write optimization, that interrelate virtual memory
and inter-process communication [10, Chapters 4-5]. It also allows user-level pro-
cesses called external memory managers to participate in virtual memory man-
agement, and to offer persistent memory objects that processes can map directly
into their address spaces. The protocols between the Mach kernel and the exter-
nal memory managers raise concurrency control problems [11]. But there is also
a more immediately practical motivation for VMACH.

Mach is considered a promising architecture for workstations and other end
systems in networks for which assurance is critical. These may include, for in-
stance, networks processing financial transactions, or multiple levels of classified
information, or air-traffic control information. Mach’s microkernel architecture
is advantageous because it allows many different applications-specific facilities,
including widely varying security policies, to be built on top of a single kernel.
The basic services of this kernel may be designed, verified and implemented once.
The cost of applying formal methods may thus be amortized over a wide range
of high-assurance applications.

The modest-sized example presented in this paper, which one person devel-
oped, debugged, and completely proved during a three week period, touches on
only a few of the issues VMACH will eventually face.? In particular, this paper
will not consider concurrency problems. Rather, it describes a sequential speci-
fication, to which a well-behaved multi-threaded implementation may conform.
Moreover, the example takes a form more reminiscent of Multics’s style of virtual
addressing [12] than of Mach’s.

IMPS as a Specification language. IMPS supports mathematics, and formal meth-
ods, using the “little theories” version of the axiomatic method [5]. The IMPS
user develops a collection of axiomatic theories, all within a single fixed logic.
Theories may be related in two main ways: a theory may extend a number of
other theories, and a theory interpretation may translate one theory into another.
A particular case study may introduce several theories; smaller, more modular
theories encourage re-use and allow a gradual development from an abstract pre-
sentation to a more detailed specification. The example in this paper introduces
four new theories. By contrast, a more detailed IMPs formalization of the Mach
system state (based on [1]) introduces a dozen in 15 pages of text.

The fixed 1MPS logic is intended not to be novel, but rather to provide a
natural framework for formalizing classical mathematics. We have selected a
version of classical simple type theory, which offers a convenient notation for
functions and a syntactic “type-checking” discipline in its type system.

2 For information on how VMACH relates to other formal methods work at The MITRE
Corporation, see [8].

We have, however, introduced two characteristics which are more unusual in
classical logics [3, 4]. These two areas represent ways that the logical tradition
appears to have diverged from the dominant style of careful rigorous mathemat-
ics.

First, in 1MPS the functions occurring in higher types include partial functions
rather than just total functions. Partial functions are treated in a direct way: if,
for instance, the value that ¢ denotes is not in the domain of the function that
f denotes, then the expression f(t) simply has no denotation.

Second, within the framework of simple type theory we have introduced a
mechanism of sub-types. For instance, if in some theory R is a type representing
the real numbers, Q and Z may be sub-types representing the rationals and the
integers. Any non-empty subset of a type may be distinguished as a sub-type.
Types and their sub-types are jointly called sorts.

These two characteristics fit together quite smoothly in simple type theory.
A function type, Z — Q, for instance, represents the set of partial functions
with domain included in Z and range included in Q. It is a subtype of R — R.

The 1MPs logic is nevertheless classical in its treatment of formulas; for in-
stance, a formula is a (propositional) tautology in the MPs logic if and only if
it is a classical tautology. We arrange this by two main conventions:

1. The denotation of any predicate is a total function into { True, False};
2. An atomic formula is false if any of its immediate constituents has no deno-
tation.

Intuitive Content of the Specification. The specification describes the service
which a virtual memory system provides to the user-level processes executing
on the system. This service makes available a set of potentially persistent mem-
ory objects which one or more processes can include directly within their virtual
address space. A process is said to map a memory object into its address space
when it allocates a range of virtual addresses to be used to reference the contents
of that memory object. When a process maps a memory object, it specifies what
part of its virtual address space it wishes to use for this purpose.

We will follow Multics terminology and refer to the part of the address space
allocated in a single map operation as a segment.? The segments in an address
space may be identified by number, and a simple addressing scheme, derived
from Multics, is to regard the upper bits of a virtual address as determining a
segment number s, while the lower bits determine an offset o within that por-
tion of memory. This addressing scheme may be regarded as a two-dimensional
arrangement, in which a word is accessed by a segment/offset pair (s, o).

A map operation takes as arguments not only the process p performing it,
the desired segment number s, and the memory object m to be mapped, but
also two additional numbers. These are a base b, which is the index within the

3 In Multics a segment had a (quite small) maximum size, and the whole issue was
intricately intertwined with hardware considerations [12]. However, neither of these
facts is essential, and neither is relevant to Mach. See, e.g., [13, Section 3.7] for a
recent general discussion of segmented memory systems.

4

memory object at which the mapped portion will begin; and a length £, which
is the number of words to map. The process will have access to the £ words
beginning with the bth word contained in the object m. The virtual address
(s, 0) will reference the word b + o within m if o < ¢; otherwise the reference is
illegal and will cause a segmentation error.

In addition to the map operation, our specification will also offer unmap,
fetch, and store. The unmap operation deallocates a segment s, so that addresses
(s,0) will be henceforth illegal. A fetch communicates the value of the word
associated with the virtual address (s, 0) to the user process p, while store allows
p to communicate a new value w which will henceforth occupy the (b + o)th
position within m.

Thus our example provides only four typical operations, rather than the
dozen that would be needed for a full description of the virtual memory inter-
face to Mach; the state is similarly simplified. The Multics-style two-dimensional
addressing also makes it easier to determine what memory object has been ref-
erenced by a virtual address.

The state itself has four components, each of them a partial function. The
first three components, «, 8, and A, take as arguments a process p and a segment,
s. They return, respectively, the memory object (if any) mapped by p in segment
s, the base of the mapped portion, and the length of the mapped portion.* The
operations respect an invariant regarding these three state components: if o is
an accessible state, then if any one of the three terms a(c)(p,s), B8(c)(p,s),
and A(o)(p,s) is well-defined, then all three of them are well-defined. When
these terms are not well-defined, that means that p has no object mapped in
the particular segment s. Thus the domain of the partial functions expresses
important state information.

The fourth state component v is a partial function taking as arguments
a memory object m and a natural number index i. The value v(o)(m,i), if
well-defined, returns the word at the ith location in m, in state o. Nothing in
the specification entails that the unary function i . y(¢)(m, i) is defined on an
initial segment of the natural numbers. For instance, to represent a common
architecture, of which MipS is an example, in which bytes are addressable but
fetches are made only from word-aligned addresses, we could specify it to be
well-defined only if 4 mod 4 = 0.

Modeling Virtual Memory. The main ingredient in a virtual memory scheme is
that the operating system uses the primary physical store (“main memory”) as
a cache for parts of the address space of processes. When a process references
a location that is represented in the store, the operating system translates the
virtual address to determine the page of store and the offset within that page to
access. Hardware and operating system software cooperate in this translation.
When a process attempts to reference a location that is not represented in the
store, it takes a page fault. The operating system attempts to page the needed

1 We could alternatively have had a single state component which returned a triple
when defined, containing memory object, base, and length.

portion of the address space in from secondary store. To do so, it may need to
free a page in primary store by flushing its current contents out to secondary
store. When these maneuvers are complete, the operating system restarts the
process at the same instruction that caused the page fault.

To justify using virtual memory to provide the services we have just de-
scribed, we must extend the notion of state. In our approach, we will enrich it
with a single global page table 7, which determines what page (if any) in pri-
mary store represents a portion of a persistent memory object. We will also add
a physical store u, which, given a page and an offset within it, determines the
word physically present at that location. Thus an implementation state o; has
three components, namely vsig, 7, and p, which represent the embedded virtual
memory specification state, the global page table, and the physical memory of
the system respectively.

An implementation fetch or store then uses 7 to determine whether the re-
quested virtual address is resident. The current store contents p determines the
word fetched or the function to be updated by the assignment, respectively. An
implementation fetch or store cannot occur if the page is not resident. The im-
plementation offers two additional operations, page_in and page_out, to cause a
page’s worth of data to become resident, and to clear a page’s worth of store for
new data.

The Abstraction Function. The states of the implementation are related to those
of the specification using a traditional abstraction function [9]. For any imple-
mentation state, there is at most one specification state it represents, although
the same specification state may be represented by many implementation states.

The heart of the abstraction function abstr is to overlay the physical store
contents in p(o;) over the “disk copies” of the memory objects, y(vsig(o;)). The
auxiliary function 4544 uses the page table 7 to do so. The rest of the abstract
state contains values from the embedded state vsig(o;).

When f, a function on implementation states, is a composition of state ma-
chine operations, we will call it an abstract no-op when abstr(f(c;)) = abstr(o;).

The Main Theorems. We include a few theorems that indicate that the opera-
tions have been specified properly. However, the main theorems are refinement
theorems. They establish a safety condition and a liveness condition. Suppose
first that g is one of the four specified operations, with parameters fixed, and h
is the implementation version of that operation. Then the safety condition states
that

h(o;) | = abstr(h(o;)) = g(abstr(c;)),

where | means “is defined.”

To state the liveness constraints we need to define the assertion s ~ ¢ (read
“s is quasi-equivalent to t”). It abbreviates the assertion (s | Vt |) = s = t.
Quasi-equivalence says that the terms have the same denotation or lack thereof,
and in the MPS logic it is the condition that justifies substitution of s for ¢,
wherever s is free for t.

The liveness condition states that there is an abstract no-op f such that
abstr(h(f(0;))) =~ g(abstr(o;)).

We call this a liveness condition because it entails that when the abstract ma-
chine can undergo operation g from abstr(c;), then even if the implementation
cannot undergo h from o;, it can evolve to an indistinguishable state f(o;) from
which it can undergo h. In our case study, the abstract no-op f consists of a
page_in operation, if needed, preceded by a page_out operation, if needed.

If by contrast h is page_in or page_out operation, to which nothing in the
abstract version corresponds, then the safety condition is that h is an abstract
no-op, abstr(h(o;)) = o;. There is no liveness constraint for this case.

These properties entail that every computation® of the abstract state machine
corresponds to a computation of the implementation machine and vice versa, in
the following sense of “correspond.” If C; is a computation of the implementation,
then an abstract computation C' corresponds to C; if there is a non-decreasing
function f : N — N onto the domain of C such that abstr(C;(j)) ~ C(f(j))-

Remainder of this Paper. The remainder of this paper consists of IMPS-generated
typeset output together with explanatory prose. All of the Theory, Definition,
Theorem, and similar environments have been constructed by IMPs directly
from the fully verified source files. In a few places linefeeds or indentation have
been added manually to the formulas. Many auxiliary lemmas have been deleted,
partly to save space and partly to highlight the main theorems for the reader.

We emphasize the iMPs LaTeX facility because we think it important that
a formal method provide a comprehensible transcript of the specifications and
theorems that have been developed.

2 Virtual Memory Specification

2.1 Basic Vocabulary and State Definition

We begin by introducing a formal language or signature to use to talk about
the virtual memory specification and its operations. This language extends the
iMPs language for real arithmetic. It contains four additional basic types, namely
mem_obj, word, process, and page. It also distinguishes two sub-sorts of the natu-
ral numbers, one to be used as segment numbers, the other to be used for offsets
within segments. A virtual address is in effect a pair (s,0) for some segment
number s and offset 0. The two subsorts are unspecified, so that this specifi-
cation is consistent with with a wide range of constraints on segment numbers
and offsets. For instance, the sorts can be interpreted as finite, and the allowable
values may be restricted to have an alignment property, such as being divisible
by 2™.

5 That is, a finite or infinite sequence C of states such that C(0) is an initial state, and
for every j where C(j + 1) |, there is an operation h such that C(j + 1) = h(C(j)).

7

Two new individual constants are also introduced, namely null_word and
pagesize, which are used respectively to represent the value to be inserted in
newly initalized memory and the hardware-determined size of a page frame.

The “language” definition that follows—along with all “definitions,” “sort
definitions,” “theorems,” and similar environments—is generated automatically
by mMPs. The parenthesized identifier is the name of the item being introduced,
in this case, a new language.

Language 2.1 (vm-language)

Embedded language: h-o-real-arithmetic

Base types: mem_obj word process page
Sorts: seg < N off & N

Constants: null_-word : word pagesize : off

We will need to assume that pagesize is not 0, so that page-aligned addresses
will make sense in Section 3.

Component theory: h-o-real-arithmetic
Top level axioms:

pagesize-non-zero —(pagesize = 0).

Fig. 1. Components and axioms for vm-1

Theory 2.2 (vim-1)
Language: vm-language
Component Theories and Axioms: See Figure 1.

We now introduce a freely generated datatype (or “BNF”) into IMPS. As
a consequence, IMPS constructs a new theory extending wm-1, which will be
named vm-spec. We will work within this theory throughout the remainder of
this section.

The new objects will belong to a logical type called pre_vstate. In general, a
BNF may have a number of atoms, as well as a number of constructors, which
may recursively construct new datatype elements from old. In this case, there
are no atoms and only a single non-recursive constructor named make_vstate, so
that the new datatype is effectively a tuple type. The four selectors extract the
tuple components. IMPS constructs the expected “no junk” (induction) and “no
confusion” axioms, and equips the theory with a good deal of other structure
which is useful when the datatype definition is recursive.

Data Type Theory 2.3 (vm-spec)
Component Theory: vm-1

Primary Type: pre_vstate
Constructor:

make_vstate : [[process x seg — mem_obj] X [process x seg — N| x [process x
seg — off] x [mem_obj x N — word] — pre_vstate], with selectors:
a : [pre_vstate — [process x seg — mem_obj]]
B : [pre_vstate — [process x seg — N]]
A : [pre_vstate — [process x seg — off]]
v : [pre_vstate — [mem_obj x N — word]]

A pre_vstate is in effect the quadruple of its «, 5, A, and v components. Of
these, a(o)(p, s) is the memory object that p has mapped in segment s, 8(c)(p, s)
is the base at which its mapped portion begins, A(c)(p, s) is the length of the
mapped portion, and v(c)(m,) returns the ith word contained in m.

Among the pre_vstates, we are only concerned with ones where the «, 3, and
A components have the same domain. We segregate them into a sort vstate. The
accessible states of our machine belong to this sort. Some work must be done
to show that an operation such as map preserves this invariant, and returns a
value within the subsort wstate. But this work must generally still be done using
other approaches to formalization; in IMPS one then benefits from the system’s
ability to use sorting information effectively in reasoning about the domain and
range of functions [6].

The sort definition that follows, generated automatically by MPs, introduces
a subsort of pre_vstate named vstate. The theory being extended by this definition
is vm-spec. The members of the new sort are those satisfying the predicate that
follows, namely those o :pre_vstate such that the conjunction of the two bulleted
assertions holds true. The notation [args — body] is IMPS’s presentation of the
A-expression Aargs . body. This bracket notation can be nested; for instance

[z:R—[y:R—z+y]]

represents the curried function that, given x, returns the function that adds z to
its argument. The word “conjunction” preceding bulleted items should be read
“The following conjunction holds;” as the word “implication” should be read
“The following implication holds;” and the biconditional sign <= should be
read “The following are equivalent.”

Sort Definition 2.4 (vstate) Theory: vm-spec
[0 : pre_vstate —
conjunction
* Vp:process, s : seg a(o)(p,s) L <= B(0)(p,s)
e Vp: process,s : seg a(o)(p,s) | <= A(o)(p,s)

D

].

2.2 Some Auxiliary Definitions

The following function resolves a p, s, o triple in the current vstate to an index
into the memory object. In this definition, the parenthesized identifier res_off is
defined to be equal to the expression which follows. In this case and most others,
that expression is a function. Thus res_off is introduced as a function constant
of sort [vstate x process x seg X off — NJ. In this definition, the LN is a term

9

with no denotation, but which has syntactic sort N . It ensures that res_off is
defined only if 0 < A(o)(p, s).

Definition 2.5 (res_off) Theory: vm-spec
[a : vstate, p : process, s : seg,0: off —
conditionally, if o < A(o)(p, s)
o then B(o)(p,s) + o
o eclse LN].

The predicate ref-legal characterizes when an s, 0 pair represents a legal vir-
tual address for the process p. It requires that p should have something mapped
in segment s, and also that the offset o is not too large.

Definition 2.6 (ref_legal) Theory: vm-spec
[o : vstate, p : process, s : seg, o0 : off —
conjunction
* a(o)(p,s) |
* 0 < Ao)(p,s)]-

The function assigny is defined to return an altered version of the function
given as its last argument ¢; the result differs in that its value for (m,) is w. It
is used to define the store operation.

Definition 2.7 (assigny) Theory: vm-spec
[m : mem_obj,i: N,w : word, ¢ : mem_obj x N — word
[mq : mem_obj,j: N —
if mi=mAi=j thenw else c(m1,j)]].

2.3 The Four Operations of the Specification

The Store Operation The definition of the store operation applies assign, to
obtain the contents component for the resulting state. The functions a and
res_off are used to return the memory object and index to alter.

Definition 2.8 (store) Theory: vm-spec
[o : vstate, p : process, s : seg, o : off,v : word —

a(o0),
B(o),
A(o),

make_vstate :

The ref auxiliary function determines a user process’s view of the contents
of memory. It uses a to determine the object referenced, and then uses res_off
to retrieve an index into the object. If the object is undefined for the index,
ref specifies that the user process sees null-filled initialized memory. This is the
behavior of Mach’s vm_allocate kernel operation [10].

10

Definition 2.9 (ref) Theory: vm-spec
[a : vstate, p : process, s : seg,0: off
conditionally
e if y(o)(a(o)(p, s), res_off(a,p, 5,0)) | then v(0)(a(o)(p, s),res-off (o, p, 5, 0))
o else if ref_legal(o, p, s,0) then null_ word
e otherwise Lword].

The ref function allows us to state a pair of correctness theorems for store, of
which we will show only the first here. It states that when we reference the same
location which has previously been stored, we retrieve the stored value. The
omitted theorem states that when we reference a different location, we retrieve
the same value that the previous state o gave.

Theorem 1. (store-ref-same) Theory: vm-spec
Vo : vstate, po, p1 : process, Sg, s1 : Seg, 09,01 : off,v : word implication
e conjunction
o ref legal(c, po, 50, 00)
o ref legal(o, p1, $1,01)
a(0)(p1, 81) = a(o)(po, so)
o res_off(o, p1,51,01) = res_off (o, po, s0, 00)
b ref(store(a, Do, S0, 0o, v)apl)81, Ol) =v.

[e]

The Fetch Operation We have arranged that all of the four operations are
formalized as functions yielding the resulting state as their values. In the case of
fetch, there is of course also another relevant piece of information, namely the
value communicated from virtual memory to the process executing the fetch. We
treat this as a parameter to the operation. The fetch returns the current state
unchanged if this parameter has the right value, and is undefined if it is wrong.
Thus, the operation is like a predicate which determines whether the value is
correct or incorrect.

This approach was suggested by CSP’s non-directional view of communication
events (see [2, Section 4.1] for a similar example). In fact, the state machine
presented here can be easily and naturally transformed into a CSP-style process
description. This is desirable because it sketches a specification for an ultimately
multi-threaded implementation.

Definition 2.10 (fetch) Theory: vm-spec
[o : vstate, p : process, s : seg,o : off,v : word —
conditionally, if v = ref(o, p, 5,0)
e theno
o else lvstate].

The Unmap and Map Operations We use an auxiliary function to cause
state components to become undefined for (p, s).

11

Definition 2.11 (free_seg) Theory: vm-spec
[p : process, s : seg —
[p1 : process, s1 : seg
if ;L =pA sy =s then Lseg else 51]].

Unmap is then straightforward to define, and map is equally predictable.

Definition 2.12 (unmap) Theory: vm-spec
[a : vstate, p : process, s : seg —>

[p1 : process, s1 : seg — a(o)(p1, free_seg(p, s)(p1,51))],
[p1 : process, s1 : seg — B(0)(p1,freeseg(p, s)(p1,51))],
[p1 : process, s1 : seg — A(o)(p1, free_seg(p, s)(p1, 1))],
v(o)

make_vstate :

]

Definition 2.13 (map) Theory: vm-spec
[o : vstate, p : process, s : seg,b: N, len : off,m : mem_obj —

[p1 : process, s1 :seg — if pr = pA sy = s then m else a(o)(p1,51)],
[p1 : process, sy :seg — if pr =pA sy = s then b else 3(0)(p1,51)],
[p1 : process, s1 : seg — if pr = pA sy = s then len else A(o)(p1,1)],
(o)

make_vstate :

3 A Rudimentary Implementation

3.1 Preliminaries: Page Offsets and Page-aligned Addresses

The function align returns the largest page-aligned address less than its argument
i, while p returns the difference between i and the page-aligned value. A variety
of arithmetical lemmas about these were proved. The sort of page aligned natural
numbers is introduced as the set of natural numbers i such that align(i) =4. 0
was provided to IMPS as witness that this set is non-empty.

Definition 3.1 (rho) Theory: vm-spec
[i:N -

i mod pagesize].
Definition 3.2 (align) Theory: vm-spec
[i:N —

div(i, pagesize) - pagesize].

Sort Definition 3.3 (aligned) Theory: vm-spec
[i:N —
align(i) = 1].

12

3.2 The State of the Implementation

The following BNF form introduces another tuple type. Here, one component of
the tuple is an embedded wvstate. The other two components represent a global
page table 7 (defined only for page-aligned indices) and a store p.

Data Type Theory 3.4 (vm-impl)
Component Theory: vm-spec

Primary Type: pre_istate
Constructor:

make_istate : [vstate x [mem_obj x aligned — page] x [page x N — word] —
pre_istate], with selectors:
vsig : [pre_istate — vstate]
m : [pre.istate — [mem_obj x aligned — page]]
u : [pre.istate — [page x N — word)]]

The implementation state obeys a crucial invariant, namely that 7(o;) has
an injective function as its value. If this were not the case, then when we altered
a single location in physical store, we would in effect have changed more than
one abstract memory object location. Hence, in that case the implementation
store operation would be unfaithful. We canonize this invariant in the definition
of the sub-sort istate.

Sort Definition 3.5 (istate) Theory: vm-impl
[o; : pre.istate —
Vmg,m : mem_obj,ag,a; : aligned s. t. 7(o;)(mo,a0) = w(o;)(m1,a1),

conjunction
® Mo =M1
®ay=ai].

The Abstraction Function. Suppose m is a memory object and 7 is an index into
it. We regard (m,) as resident in physical store in state o; when (m, align(s)) is
in the domain of the function 7(0;).

Definition 3.6 (resident) Theory: vm-impl
[o; : istate, m : mem _obj,i : N —
(o) (m, align(i)) 1]

To determine the abstract contents of memory objects determined by an
implementation state o;, we combine physical store with the disk copies. If an
address is resident, then 7 and p determine its current value. Otherwise, the
contents function v of the embedded wvstate determines its value.

Definition 3.7 (gamma_abstr) Theory: vm-impl
[o; : istate —
[m : mem_obj,i: N —
if resident(o1, m,) then (1) (m(o+) (m, align()), p(3)) else (vsig(o1))(m,)]]

13

The abstraction function modifies the embedded vstate to use Y,pss in place
of ~.

Definition 3.8 (abstr) Theory: vm-impl
[o; : istate —
let o : vstate be vsig(o;) in

(o),

B(o),
A(o),
'Yabstr(a'i)

make_vstate :

3.3 The Operations Supported by the Implementation

The map and unmap operations remain essentially unchanged in the implemen-
tation, and will be omitted from this presentation to save space. The page-out
and page-in operations may occur freely at any time; page-in enables ifetch and
istore to occur, as the latter two are possible only if the target address is resident
in the store.

The Istore Operation To define istore, we define an assignment function for
physical store, as well as some auxiliaries to package up address translation.

Definition 3.9 (assign_i) Theory: vm-impl
[p:page,i: N,w: word,c: page x N — word —
[p1 : page,j : N —
if pp =pAi=j then w else c(p1,j)]].

Definition 3.10 (va_to_page) Theory: vm-impl
[o; : istate, p : process, s : seg,0: off —

let o : vstate be vsig(o;) in

W(Ui)(a(a-) (pa 8)7 align(res_off(a, b, s, O)))]

Definition 3.11 (va_resident) Theory: vm-impl
[o; : istate, p : process, s : seg,0: off —
va_to_page(oi,p, S, O) *L]

Definition 3.12 (va_res_off) Theory: vm-impl
[o; : istate, p : process, s : seg,0: off —
p(res_off (vsig(oi), p, 5,0)) |-

Definition 3.13 (istore) Theory: vm-impl
[o; : istate, p : process, s : seg, 0 : off, v : word —
make_istate(vsig(o;),
W(Ui)a
assign, (va_to_page(o;, p, s,0), va_res_off (o, p, s,0),v, u(0;))) .

The first of the main refinement theorems is shown in Figure 2.

14

Theorem 2. (istore-impl-correct) Theory: vm-impl
Vo, : istate, p : process, s : seg, o : off, v : word
s. t. va_resident(os,p, s,0),

abstr(istore(oy, p, s, 0, v)) = store(abstr(o;),p, s, 0,v).

Fig. 2. Safety Theorem for istore Operation

The Ifetch Operation The implementation function iref is conceptually sim-
ilar to ref, but references physical store rather than abstract memory objects.
It uses the virtual-to-physical address translations defined above. At this ab-
straction level, physical store is not viewed as being truly initialized to a null
value; rather, iref manipulates the way that a user process sees it. Initialized
physical store can be justified in a further refinement step using methods like
those described in this paper.

Definition 3.14 (iref) Theory: vm-impl

[a,- : istate, p : process, s : seg,o0 : off —
let pg : page be va_to_page(o;,p,s,0) and i : N be va_res_off(o;,p, s,0) in
conditionally, if u(o;)(pg,%)

o then u(oi)(pg, i)
e else null_word].

Definition 3.15 (ifetch) Theory: vm-impl
[o; : istate, p : process, s : seg, 0 : off,v : word —
conditionally, if v = iref(o;, p, s, 0)
e then o;
o clse Listate].

Theorem 3. (ifetch-impl-correctness) Theory: vm-impl
Vo, : istate, p : process, s : seg, o0 : off, v : word
s. t. ifetch(os,p,s,0,v) |,

abstr(ifetch(oy, p, s, 0,v)) = fetch(abstr(o;), p, s, 0,v).

Fig. 3. Safety Theorem for ifetch Operation

The second main refinement theorem is shown in Figure 3.

The Paging Operations The operation to page in data from a memory object
transfers one page’s worth of words, starting at a page-aligned address a, from
the permanent memory object to physical store. The function page_at returns

15

a function that, when applied to a natural number i less than the page size,
retrieves the word at location a + . This function determines the behavior of
physical store after a page has been brought in.

Definition 3.16 (page_at) Theory: vm-impl
[o; : istate, m : mem_obj, a : aligned —
[i: N —
if i < pagesize then ~y(vsig(o;))(m,a + i) else Lword]].

To retrieve a page of data, the target page frame must be free, and the data
must not yet be resident. If the former failed, the page table might no longer be
injective, while if the latter failed, it might no longer be a functional relation.
We have omitted the series of definitions that introduces page_free for the sake
of space; however,

page_free(o;,p) <= —(Im : mem_obj,a : aligned = (o;)(m,a) =p).

Definition 3.17 (page_in_guard) Theory: vm-impl
[o; : istate, p : page,m : mem_obj, a : aligned —
conjunction
e page_free(a;, p)
o —(resident(o;, m,a))].

The page_in operation must update the page table 7 to map the abstract
memory to p, and it must update physical store y at p to reflect the contents of
the page’s worth of data being transferred.

Definition 3.18 (page_in) Theory: vm-impl
[o; : istate, p : page,m : mem_obj, a : aligned —
conditionally, if page_in_guard(c;, p, m,a)
e then make_istate(vsig(o;),
[my : mem_obj,a; : aligned — if my = mAa; = a then p else n(0;)(m1,a1)],
[p1 : page,i: N — if p1 = p then page_at(o;,m,a)(i) else p(o;)(p1,4)])
o clse Listate].

Theorem 4. (page_in-impl-correctness) Theory: vm-impl
Vo, : istate, p : page, m : mem obj, a : aligned
s. t. pagedin_guard(o;,p, m,a),

abstr(page_in(o;, p, m, a)) = abstr(o;).

Fig. 4. Safety Theorem for page_in

The safety theorem for page_in, which does not implement any abstract op-
eration, states that it is an abstract no-op (Figure 4).

16

The page-out operation is similar to the page-in operation, except that it
must instead flush a page’s worth of data from physical store back out to disk.
The page table is modified to mask out the entry for the newly flushed page. To
save space, we will not present the details here.

3.4 Liveness of the Implementation

To state and prove the liveness theorems, we introduce the operating system
notion of a paging strategy. We extend the language of vm-impl with two func-
tion constants. One, selected_page, returns the page frame which the operating
system would select as target for a page_in operation in the current state. It is
assumed that this is a free page, whenever there is any free page at all. The
other, rejected_page, returns the page frame which the operating system would
flush during a page_out operation in the current state. It is assumed never to
return a free page as its value, and to be well-defined whenever the state has a
page frame in use. These assumptions are formalized in vm-impl+.

Language 3.19 (vm-impl+-language)
Embedded language: vm-impl
Constants: selected_page : [istate — page] rejected_page : [istate — page]

Component theory: vm-impl
Top level axioms:

rejected_page-unfree Vo; : istate —(page_free(o;, rejected_page(o;))).

rejected_page-defined Vo; : istate s.t. IJp:page -(page_free(oi,p)),
rejected_page(o;) | .

selected_page-free Vo; :istate s.t. Jp:page pagefree(o;,p),
page_free(o;, selected _page(o;)).

Fig. 5. Components and axioms for vm-impl+

Theory 3.20 (vm-impl+)
Language: vm-impl+-language
Component Theories and Axioms: See Figure 5.

Definition 3.21 (maybe_flush) Theory: vm-impl+
[o; : istate —
conditionally, if Ip : page page_free(o;,p)
e then o;
o else page_out(o;, rejected_page(o;)) .

17

We give the following definition in S-unreduced form because it is a lit-
tle more compact and maybe clearer; in the else clause, o; takes the value
maybe_flush(a;).

Definition 3.22 (maybe_page_in) Theory: vm-impl+
[o; : istate, m : mem_obj, a : aligned —
conditionally, if resident(c;,m, a)
e then o;
e else [o; : istate — page_in(o;,selected_page(o;), m,a) |(maybe_flush(c;))].

We now state the last two main refinement theorems, the liveness theorems for
istore and ifetch. FEach of them asserts that the operation commutes with abstr,
after any necessary paging activity has been performed. That is, if o; results from
o; by maybe paging in the required data (which in turn may require flushing a
page frame), then

abstr(h(o;)) ~ g(abstr(o;))

where h is the implementation operation (for the chosen parameters), and g is
the specification operation (for the same parameters). Again, the ~ sign here
means quasi-equivalence; the formula is true if the left and right hand sides have
the same value or lack thereof. Hence, the liveness theorem entails that when
the specification operation g can occur, then the implementation operation h can
also occur, although possibly after the paging activity. This is the main content
added to the safety theorems (Theorems 2 and 3), which are used as lemmas in
the proofs of the liveness theorems.

In the local definition of o;, the term a(vsig(o;))(p,s) selects the perma-
nent memory object that referennces to the virtual address (p,s) concern. The
term align(res_off (vsig(o;), p, 8, 0)) returns the page-aligned address immediately
preceding the resolved offset into the object.

Theorem 5. (istore-liveness-theorem) Theory: vm-impl+
Vo, : istate, p : process, s : seg, o : off, v : word

let s; : istate

be maybe_page_in(o;, a(vsig(oi))(p, s), align(res_off (vsig(os), p, 8,0))) in
abstr(istore(s;, p, s, 0,v)) ~ store(abstr(o;), p, s, 0, v).

Theorem 6. (ifetch-liveness-theorem) Theory: vm-impl+
Vo, : istate, p : process, s : seg, o : off, v : word

let o; : istate

be maybe_page_in(o;, a(vsig(oi))(p, s), align(res_off (vsig(o;), p, 8,0))) in
abstr(ifetch(oj, p, s, 0,v)) ~ fetch(abstr(o;), p, s, 0, v).

Fig. 6. Liveness Theorems for istore and ifetch

18

3.5 Conclusion

These theorems establish that the implementation is a refinement of the specifi-
cation. More specifically, every computation of the abstract machine corresponds
to a computation of the implementation, and conversely. We have not yet, how-
ever, formalized and derived this theorem about computations within IMPS.

The paper was intended to demonstrate a style for specifying and, at least for
the initial stages, verifying refinements of a virtual memory system. A realistic
verification of a virtual memory system requires many additional ingredients.
In particular, issues of concurrency are unavoidably raised; an operating system
must schedule a different process when one process takes a page fault and waits
for paging to complete. As a consequence, the state at the time that a paging
operation completes may differ in other ways from the state at the time it began.
Thus, an element of non-determinism arises. In Mach, our primary focus, the
multi-threaded character of the kernel ensures that other concurrency control
issues also arise.

Nevertheless, state information is indispensable in characterizing the behav-
ior of an operating system, and we believe that these refinement techiques play
a crucial role in the state-oriented aspects of providing a reliable, rigorously
understood computing system.

Acknowledgment. I am deeply grateful to Bill Farmer and Javier Thayer, my
colleagues in developing IMPS.

References

1. W. R. Bevier and L. M. Smith. A mathematical description of the Mach kernel:
Entities and relations. Technical Report 88, Computational Logic, Incorporated,
Austin, TX, February 1993.

2. J. Davies. Specification and proof in real-time systems. Technical report, Oxford
University, Programming Research Group, September 1993. Report to Defence
Research Agency, Malvern.

3. W. M. Farmer. A partial functions version of Church’s simple theory of types.
Journal of Symbolic Logic, 55:1269-91, 1990.

4. W. M. Farmer. A simple type theory with partial functions and subtypes. Annals
of Pure and Applied Logic, 64:211-240, 1993.

5. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, ed-
itor, Automated Deduction—CADE-11, volume 607 of Lecture Notes in Computer
Science, pages 567-581. Springer-Verlag, 1992.

6. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: an Interactive Mathemat-
ical Proof System. Journal of Automated Reasoning, 11:213-248, 1993.

7. W. M. Farmer and F. J. Thayer. Two computer-supported proofs in metric space
topology. Notices of the American Mathematical Society, 38:1133-1138, 1991.

8. J.D. Guttman and D. M. Johnson. Two applications of formal methods at
MITRE. Submitted to FME '94., March 1994.

9. C. A.R. Hoare. Notes on data structuring. In O.-J. Dahl, editor, Structured
Programming. Academic Press, 1972.

10.

11.

12.

13.

19

Keith Loepere. Mach 3 kernel interfaces. Technical report, Open Software Founda-
tion, Cambridge, MA, July 1992. Jointly copyright by Open Software Foundation
and Carnegie-Mellon University.

Keith Loepere. Mach 3 server writer’s guide. Technical report, Open Software
Foundation, Cambridge, MA, July 1992. Jointly copyright by Open Software Foun-
dation and Carnegie-Mellon University.

Elliott I. Organick. The Multics System: An Ezamination of its Structure. The
MIT Press, Cambridge, MA, 1972.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1992.

20

Table of Contents

1 Introduction 1
2 Virtual Memory Specification 6
2.1 Basic Vocabulary and State Definition 6

2.2 Some Auxiliary Definitions 8

2.3 The Four Operations of the Specification 9
The Store Operation 9

The Fetch Operation 10

The Unmap and Map Operations 10

3 A Rudimentary Implementation 11
3.1 Preliminaries: Page Offsets and Page-aligned Addresses 11

3.2 The State of the Implementation 12

3.3 The Operations Supported by the Implementation 13
The Istore Operation 13

The Ifetch Operation 14

The Paging Operations 14

3.4 Liveness of the Implementation 16

3.5 Conclusion L. 18

This article was processed using the IATEX macro package with LLNCS style

