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1 Introduction

Every mathematician will agree that the discovery, analysis, and commu-
nication of theorems and proofs is at the heart of his or her discipline. A
number of computer programs (such as Maple or Mathematica) assist mathe-
maticians in testing conjectures and proving certain kinds of theorems, typ-
ically identities involving rational functions or trigonometric polynomials.
These systems, however, were never intended for some of the most critical
parts of the mathematical process: formulation of concepts and theories and
rigorous proof of general theorems.

There are other programs, less well known in the mathematical commu-
nity, that are designed to provide computer support for the actual theorem
proving process. These programs, usually called theorem provers, tend to be
very specialized tools, aimed at discovering or checking proofs in languages or
logical systems not ordinarily used by mathematicians. Nevertheless, some
theorem provers have been used to produce fully machine-checked proofs of
mathematically significant results; for examples, see [1, 2, 3, 8, 9].

In this article we discuss two proofs that were created with the help of
a computer theorem proving system called imps (Interactive Mathematical
Proof System), which is currently being developed at The MITRE Corpo-
ration. The fact that these results were proven using a computer is not
∗Supported by the MITRE-Sponsored Research Program. Published in the Computers
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in itself noteworthy. However, it is significant that the proof itself can be
organized in a way which is at the same time comprehensible to a mathe-
matically trained person and recognizably valid to the computer. We want
to conclude from this that computers can indeed support the standard tech-
niques of mathematics and can provide strong organizational, as well as
computational, assistance for theorem proving.

The two theorems proved are the following elementary results about the
topology of metric spaces:

Theorem 1 Let f be a continuous mapping from a metric space M to a
metric space N . If A ⊆M is connected, then f(A) is likewise connected.

Theorem 2 Let f be a continuous mapping from a metric space M to a
metric space N . If A ⊆M is sequentially compact, then f(A) is likewise
sequentially compact.

In Section 2, we shall discuss some of the facets of imps that make
it particularly suitable for formulating and reasoning about mathematics.
Then in Section 3 we will describe the formal theory in which the theorems
are stated and proved. The proofs of the two theorems are given in Section
4. The final section, Section 5, contains a short conclusion.

2 IMPS

The imps system is intended to provide computational support for rigorous
mathematical reasoning in a style that closely conforms to conventional prac-
tice. It can be used to formulate axiomatic theories and to prove theorems
in them. The major goal of the system is to provide users with the means
to develop machine-checked proofs that are convincing and intelligible to a
wide audience.

For a detailed overview of the imps system see [6]. In the rest of this
section we shall describe three aspects of imps that facilitate the construction
of intelligible proofs: its logic, its support for the axiomatic method, and its
style of proof.
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Logic

In imps all concept formulation, calculation, and inference is performed with
respect to a formal logic that is a version of classical higher-order predicate
logic. This logic provides strong support for specifying and reasoning about
functions. In particular, functions may be higher order (have arguments
which are themselves functions) and partial (not defined on all arguments).
In addition, formulas may contain arbitrary quantification (universal or ex-
istential) over functions. Partial functions are handled in a direct manner,
without introducing special error elements. This means that some terms
such as 2/0 have no value assigned to them. A direct approach to partial
functions is very convenient for formalizing mathematics in which partial
functions play a prominent role. This is especially true for analysis where
partial higher-order functions, such as the differentiation operator on func-
tions, occur naturally.

The imps logic is equipped with a hierarchy of objects called sorts which
denote classes of elements. Sorts are used to help specify the value of an
expression and to restrict quantification. They are especially useful for rea-
soning with respect to overlapping domains. For example, suppose Z and R
are sorts denoting the integers and the real numbers, respectively. Then the
Archimedean principle for the real numbers can be expressed quite naturally
as

for every a : R for some n : Z a < n.

For more information on the imps logic, see [4, 5, 7].

2.1 Axiomatic Method

The axiomatic method comes in two basic styles. There is the “big the-
ory” style in which all reasoning is carried out within one theory—usually
some highly expressive theory, such as Zermelo-Fraenkel set theory. There
is also the “little theories” style in which results are proven in small ab-
stract theories and then used in more concrete theories. This latter style
of the axiomatic method is employed extensively in standard practice. For
example, if a mathematician needed a fact about multiplication over the
nonzero elements in a field, he would usually not prove it in the context
of fields if he could get away with proving it as a general result in group
theory. That is, he would prove a general result in group theory, notice that
multiplication over the nonzero elements has the structure of a group, and
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then appropriately instantiate the general result to obtain the desired fact.
In other words, a mathematician will typically prove a result in a context
free of unnecessary details, so that the result can be used freely in a variety
of more specialized contexts.

Most theorem provers today support only the big theory style of the
axiomatic method. In contrast, imps provides a number of facilities for using
the axiomatic method in the little theories style. Users of imps can freely
formulate multiple axiomatic theories. Each theory consists of a formal
language—specified by a set of atomic sorts and constants—and a set of
axioms expressed in the language. Theories are related to each other by
theory interpretations. A theory interpretation is a syntactic device for
translating the language of a theory T to the language of a theory T ′ with
the property that each theorem of T is translated to a theorem of T ′. Theory
interpretations thus provide a mechanism for “transporting” theorems from
abstract theories to more concrete theories.

The imps theory and theory interpretation mechanisms should be use-
ful in much of mathematical analysis, where reasoning is typically done at
various levels of abstraction. For example, the proof of the Picard-Lindelöf
existence theorem for ordinary differential equations is often proved in text-
books by applying the fixed point principle for contractive mappings on a
complete metric space. In the terminology of imps, that approach requires
the construction of a theory interpretation in which a metric space is inter-
preted as a space of continuous functions on an interval. The real work here
consists of showing that this instantiation is valid, which involves among
other things, reasoning about integrals of real-valued functions on intervals.

2.2 Proofs

Imps produces formal proofs, but they are very different from the formal
proofs that are described in logic text books. Usually a formal proof is a
tree or graph constructed in a purely syntactic way from axioms, previously
proved theorems, and a small number of low-level rules of inference. Formal
proofs of this kind tend to be composed of an enormous number of small
logical steps and for this reason are usually exceedingly hard to understand.
In contrast, the steps in an imps proof can be very large, and most low-level
inference in the proof is performed by an expression simplification routine.
Since inference is described at a high-level, proofs constructed in imps re-
semble informal proofs, but unlike an informal proof, all the details of an
imps proof are machined checked.
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In imps there are several devices for compressing complex deductions into
single units. Expression simplification carries out myriad low-level inferences
in one step using algebraic manipulation, term rewriting, and special algo-
rithms for checking the definedness of terms. Theorem assumption allows
one to assume intermediate assertions that have been proved independently,
either in the home theory of the proof or in some appropriate outside the-
ory. Collections of theorems can be automatically applied, in an organized
manner, to a conjecture using macetes.1 Strategies call rules of inference—
including simplification, theorem assumption, and macete application—in
useful patterns; they are akin to what are called tactics in other systems.

These devices for packaging inferences help the imps user to raise the
essential ideas of a proof to the surface, while suppressing the details that
would normally not appear in a written presentation of the proof. They also
give the user the means to initiate and control machine deduction.

3 The Formal Theory

The formal proofs of Theorems 1 and 2 are carried out in a theory of metric
space pairs. Before describing this theory, we need to describe two other
basic theories that serve as building blocks for this theory.

3.1 Higher-Order Real Arithmetic

The imps theory of higher-order real arithmetic, called h-o-real-arithmetic,
axiomatizes the real number system as a complete ordered field and char-
acterizes the integers and rationals as imbedded structures. This is a fairly
extensive theory, so we only describe it informally here. The language con-
stants of this theory are of two kinds:

• The function constants +, *, /, ˆ, sub, -, <, ≤ that denote the arith-
metic operations of addition, multiplication, division, exponentiation,
subtraction, negation, and the binary predicates less than and less
than or equal to, respectively.

• An infinite set of individual constants, one for each rational number.

The atomic sorts of the language are Z, Q, R denoting the integers,
rationals, and reals. Other constants and sorts can be added by definitions.

1In Portuguese, a macete is a clever trick.
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The axioms of this theory are the usual field and order axioms as well
as the completeness axiom which states that any predicate which is non-
vacuous and bounded above has a least upper bound. This theory also
contains the full second-order induction principle for the integers as an ax-
iom. One can prove in this theory the basic facts about real numbers such
as the archimedean principle stated above.

3.2 Metric Spaces

The theory metric-spaces is a formal theory of a single metric space. It is suf-
ficiently expressive to formulate the basic concepts of a metric spaces, such
as open and closed sets, connectedness, sequential compactness (equivalent
to compactness for separable metric spaces), and continuity of real-valued
functions. Results proven in this theory can be transported, for example,
to the theory of higher-order real arithmetic. The theory is defined in imps

by the two forms (or s-expressions) given below. The first of these forms
defines the language (i.e., the atomic sorts and constants which constitute
the vocabulary of the theory), and the second form essentially just lists the
axioms of the theory.

(language-from-definition
’(metric-spaces-language
(embedded-languages h-o-real-arithmetic)
(base-types points)
(constants
(dist (points points rr)))))

(theory-from-definition
’(metric-spaces
(component-theories h-o-real-arithmetic)
(language metric-spaces-language)
(axioms
(positivity-of-distance
"forall(x,y:points, 0<=dist(x,y))")
(point-separation-for-distance
"forall(x,y:points, x=y iff dist(x,y)=0)")
(symmetry-of-distance
"forall(x,y:points, dist(x,y) = dist(y,x))")
(triangle-inequality-for-distance
"forall(x,y,z:points, dist(x,z)<=dist(x,y)+dist(y,z))"))))
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These forms say the following:

• The theory metric-spaces includes h-o-real-arithmetic as a subtheory
(which, in particular, means completeness arguments can be freely
used).

• The underlying set of the metric space is denoted by the sort points.
The function constant dist denotes the distance between two points in
the metric space. (Note: the sort R is entered at the keyboard by rr .)

3.3 Metric Space Pairs

The relevant theory for stating and proving Theorems 1 and 2 is called
metric-space-pairs. The theory of a single metric space is insufficient to for-
mulate a completely general theory of continuous functions between metric
spaces, one that will include for instance continuous mappings between R3

to R2 as a special case of the general theory. Imps has a theory replica-
tion mechanism which allows users to automatically create a new theory
which contains a fixed number of imbedded copies of a given theory. By
an imbedding we mean a theory interpretation as explained earlier in the
paper.

Theory replication is essential for doing interesting mathematics because
most often one considers several instances of the same structure and map-
pings between these structures. Thus ordinarily mathematicians think of
“ring theory” not as a formal theory of a single ring (which does not pro-
vide much material for mathematical development) but at the very least as
a theory of rings and morphisms between them.

The theory replication is specified in imps by the following form:

(poly-replicate-theory-with-definitions
metric-spaces
(list ’first ’second)
’metric-space-pairs)

The theory metric-space-pairs includes h-o-real-arithmetic plus the fol-
lowing additional components:

• The additional atomic sorts (i.e., the atomic sorts of the theory’s lan-
guage other than those in h-o-real-arithmetic) are first points and sec-
ond points.
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• The additional constants are first dist and second dist.

• The additional axioms of the theory are the metric distance axioms
(triangle inequality, symmetry, etc.) for the functions first dist and
second dist.

The procedure poly-replicate-theory-with-definitions also creates a pair
of translations from metric-spaces to metric-space-pairs. Moreover, defined
constants in the theory metric-spaces are automatically translated in two
different ways to similarly defined constants in the theory metric-space-pairs.
For example, the predicate open which is defined in the theory metric-spaces
is translated as two predicates first open and second open, corresponding
to the property of being an open subset of first points and second points,
respectively.

3.4 Indicators

So far we have not discussed how to quantify over sets of points in a way
which would allow us to define connectedness or sequential compactness.
One possibility is to imbed the theory of metric space pairs in a larger theory
such as Zermelo-Fraenkel set theory. This approach is quite feasible but has
the disadvantage that it requires a certain amount of preparatory work in
set theory. Moreover, results in this larger theory can only be transported to
other theories which are similarly imbedded in set theory. This considerably
restricts the flexibility with which results can moved around from theory to
theory.

In our development of metric spaces, we have adopted the more direct
approach of conceptually identifying a set S with a function f which takes on
a fixed value (say the number 1) on S and is undefined everywhere else. We
call such functions indicators. We have developed several “generic” theories
involving indicators which allow us to prove theorems about sets, covers
and inverse images in a very abstract setting. Since these theories have no
axioms, theorems proved in them can quite easily be transported to other
theories.

The following is an example of a useful fact (named direct-image-subset-
conversion) which can be proved in one of these generic theories. It allows
us to replace, in certain cases, statements involving direct images with state-
ments involving inverse images.
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for every f : ind1 → ind2, a : sets[ind1], b : sets[ind2] implication
• total(f, [ind1 → ind2])
• f(a) ⊆ b ⇐⇒ a ⊆ f−1(b).

This is a useful result, since inverse images have nicer properties than di-
rect images. We make use of this result and similar results in our computer-
assisted proofs of Theorems 1 and 2.

3.5 Definitions

Theories can be enriched by sort and constant definitions. The definitions
we need to formulate Theorems 1 and 2 all define predicate constants which
denote boolean-valued functions. Our definitions of the requisite topological
predicates are very close to the conventional ones adopted in most textbooks.
For example, the following expression is the condition for x to be a connected
subset of points.

for every a, b : sets[points] implication
• conjunction
◦ open(a)
◦ open(b)
◦ empty?{a ∩ b ∩ x}
◦ x ⊆ a ∪ b
• disjunction
◦ x ⊆ a
◦ x ⊆ b.

The condition for a function f : first points → second points to be
continuous can be given in several equivalent ways, but for our purposes,
the most convenient one is

for every v : sets[second points] implication
• second open(v)
• first open(f−1(v)).

Of course one can show in imps (with a certain amount of user assistance)
that this condition is equivalent to the usual ε, δ condition for continuity.
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4 The Proofs

We describe in this section formal proofs of Theorems 1 and 2 produced with
imps. A proof in imps is represented by a data structure called a deduction
graph. A deduction graph is a directed graph with nodes of two kinds,
representing formulas and inferences respectively. The formulas appearing
in a deduction graph are actually sequents consisting of a single formula
called the assertion together with a set of assumptions called the context .
A sequent is considered to be true if its context implies its assertion.

There are two basic routines in imps for presenting the information con-
tained in a deduction graph in a TEX format. One routine describes each
logical inference recorded in the deduction graph. The other routine is pre-
scriptive: it presents the deduction graph in terms of the user commands
(i.e., rules of inference, macetes, and strategies) that were used to construct
the deduction graph. This is analogous to how proofs are given in a lecture
or in a textbook. Few details are provided by the lecturer, who limits him
or herself to giving the information on how to reconstruct the proof. The
proofs in the section are presented using this latter routine.

The formal statement of the first theorem is:

Theorem 1

for every f : first points→ second points, o : sets[first points] implication
• conjunction
◦ continuous(f)
◦ total(f, [first points→ second points])
◦ first connected(o)
• second connected(f(o)).

We present the proof of Theorem 1 as it is actually formatted by imps

using the prescriptive proof presentation routine. In this particular proof
the full deduction graph consists of 18 sequent nodes.

Before presenting the proof, we give the intuitive idea behind it. The
proof begins by expanding all definitions at the top level of the expres-
sion. In this case the defined constants are the predicates first connected ,
second connected and continuous. Since these constants are defined as λ-
expressions (a λ-expression is a fancy name for a term of the form “the func-
tion which carries x, y, . . . to the expression blah”), expanding the definitions
merely replaces these constants with their defining λ-expressions. We next
have to apply the rule of β-reduction, which essentially plugs in values to
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the expressions which define the functions. This leaves us with an assertion
which contains several subexpressions of the form f(a) ⊆ b. We now apply
a user-defined macete which applies repeatedly a number of generic (and
very easy to prove) results on indicators, such as the direct-image-subset-
conversion lemma mentioned above. Application of this macete turns these
subexpressions into subexpressions of the form a ⊆ f−1(b) and also uses
the preservation properties of f−1. To complete the proof, we use an ending
strategy . An ending strategy attempts to find a proof of a goal sequent by
successively applying rules of inference from a fixed list (depending on the
strategy) and backtracking when a particular branch fails.

Proof. Apply the strategy definition-expansion to the claim of the theorem.
This yields the following new subgoal:

Sequent 1.

for every f : first points→ second points, o : sets[first points] implication
• conjunction
◦ λ{f : first points→ second points | ∀v :

sets[second points] second open(v) ⊃ first open(f−1(v))} (f)
◦ total(f, [first points→ second points])
◦ λ{x : sets[first points] | ∀a, b : sets[first points] (first open(a) ∧

first open(b) ∧ empty?{a ∩ b ∩ x} ∧ x ⊆ a ∪ b) ⊃ (x ⊆ a ∨ x ⊆ b)} (o)
• λ{x : sets[second points] | for every a, b : sets[second points] implication
◦ second open(a) ∧ second open(b) ∧ empty?{a ∩ b ∩ x} ∧ x ⊆ a ∪ b
◦ x ⊆ a ∨ x ⊆ b} (f(o)).

Apply the inference rule beta-reduction to the previous sequent. This yields
the following new subgoal:

Sequent 2.

for every f : first points→ second points, o : sets[first points] implication
• conjunction
◦ ∀v : sets[second points] second open(v) ⊃ first open(f−1(v))
◦ total(f, [first points→ second points])
◦ ∀a, b : sets[first points] (first open(a) ∧ first open(b) ∧ empty?{a ∩ b ∩

o} ∧ o ⊆ a ∪ b) ⊃ (o ⊆ a ∨ o ⊆ b)
• for every a0, b0 : sets[second points] implication
◦ second open(a0)∧ second open(b0)∧ empty?{a0 ∩ b0 ∩ f(o)}∧ f(o) ⊆ a0 ∪ b0
◦ f(o) ⊆ a0 ∨ f(o) ⊆ b0.
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Apply the macete direct-image-to-inverse-image-conversion-macete to
the previous sequent. This yields the following new subgoal:

Sequent 3.

for every f : first points→ second points, o : sets[first points] implication
• conjunction
◦ ∀v : sets[second points] second open(v) ⊃ first open(f−1(v))
◦ total(f, [first points→ second points])
◦ ∀a, b : sets[first points] (first open(a) ∧ first open(b) ∧ empty?{a ∩ b ∩

o} ∧ o ⊆ a ∪ b) ⊃ (o ⊆ a ∨ o ⊆ b)
• for every a0, b0 : sets[second points] implication
◦ second open(a0) ∧ second open(b0) ∧ empty?{f−1(a0) ∩ f−1(b0) ∩ o} ∧ o ⊆

f−1(a0) ∪ f−1(b0)
◦ o ⊆ f−1(a0) ∨ o ⊆ f−1(b0).

Apply the strategy prove-by-logic-and-simplification to the previous sequent.
This completes the proof.

The formal statement of the Theorem 2 is almost identical to that of
the previous theorem except that “connected” is replaced with “compact.”
Moreover, the sequence of user commands required to prove Theorem 2 is
identical to that of Theorem 1. Of course, the actual TEX form of the
proof is different because the goal formula and all intermediate formulas are
different. We omit the details.

5 Conclusion

In this article we presented computer-supported proofs of two theorems in
metric space topology. The theorems were stated within an axiomatic theory
of metric space pairs using familiar topological concepts such as open set
and continuous function which were defined in a very direct and natural
way. The proofs were constructed within a version of predicate logic with
the help of the imps theorem proving system. Each proof was fully machine
checked and required only four commands from the user.

The theorems and proofs were developed in the little theories style of
the axiomatic method. This approach benefited our proofs in two ways.
First, both proofs utilized results proved outside of the theory of the proof,
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specifically results about converting statements involving direct images into
statements involving inverse images. These results were proved in a theory
about abstract mappings, and the system determined on its own how and
where to apply them. Second, the two theorems can be transported to any
theory that contains structures which are metric spaces. For example, they
can be transported to the theory h-o-real-arithmetic by interpreting the two
metric spaces of metric-space-pairs as R3 and R2.

The everyday practice of mathematics involves proving numerous ele-
mentary, but not entirely trivial results, which are similar in complexity to
Theorems 1 and 2. In fact, many substantial theorems are proved by just
skillfully combining elementary facts. Systems such as imps, which can be
effectively used to formulate, prove, and apply elementary theorems, thus
have the potential to play a significant role in mathematics research. More-
over, they offer mathematicians a new technology for organizing, checking,
and reusing their work.
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