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Abstract
This paper describes a scheme for defining partial higher-order functions as the least fixed points of monotone
functionals. The scheme can be used to define both single functions by recursion and systems of functions by
mutual recursion. The scheme is implemented in theIMPS Interactive Mathematical Proof System. TheIMPS
implementation includes an automatic syntactic check for monotonicity that succeeds for many common recursive
definitions.

1 Introduction

Recursion is a powerful technique for defining functions (and other mathematical objects). It is one of the
mainstays of formal methods. Defining a function by recursion can facilitate both reasoning and computa-
tion performed with the function. Constructing a recursive definition of a function requires care: a faulty
definition will not define a bona fide function and may introduce inconsistencies. For example, there is no
functionf onN (the set of natural numbers) that satisfies the recursive formula

∀n . f(n) = f(n) + 1,

and the assumption that there is such a function implies that0 = 1.
Various schemes for defining functions by recursion have been proposed. A definition that is admitted

by a scheme is called aninstanceof the scheme. Each scheme has a set ofinstance requirementsthat a
proposed definition must satisfy in order to be an instance of the scheme. For some schemes a definition
is required only to have a certain syntactic form, while for other schemes a definition must possess certain
semantic properties. A scheme isproper if every instance of the scheme actually defines a function. The
domainof a scheme is the setD of functions such thatf ∈ D iff there is some instance of the scheme that
definesf .

A popular proper recursive definition scheme is the scheme ofprimitive recursion(see [10]). An in-
stance of primitive recursion is a pair of equations satisfying certain syntactic requirements. The domain of
primitive recursion is a broad, but proper, subset of the computable total1 functions onN. For example, the
following pair of equations constitute a primitive recursive definition of the factorial functionf : N→ N:

1The domain of definitionof a functionf is the setDf of values at whichf is defined, and thedomain of applicationof f is the setD∗f of
values to whichf may be applied. A functionf is total if Df = D∗f andpartial if Df ⊆ D∗f . Thus a total function is a special case of a partial
function.
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(1) f(0) = 1.

(2) f(n+ 1) = h(n, f(n)) where h(x, y) = y ∗ (x+ 1).

There is a family of proper recursive definition schemes that are based onwell-founded recursion. A
definition of a unary functionf in this kind of scheme consists of a triple(T , ϕ,�) whereT is a theory,ϕ
is an formula of the form

∀x . f(x) = A(f(a1(x)), . . . , f(ak(x))),

and� is a well-founded relation. The definition is an instance of the scheme if each application off in the
right side ofϕ is always “�-simpler” than the application off on the left side ofϕ, i.e., that, for eachi with
1 ≤ i ≤ k,

ai(x)� x

holds in T together with the “local context” of assumptions that govern the occurrence off(ai(x)) in
ϕ. The domain of a well-founded recursive definition scheme can be very large including the primitive
recursive functions and other computable total functions as well as possibly noncomputable total functions.
Normally, the domain will not contain functions that are strictly partial. For example,(A, ϕ,�) constitutes
a well-founded recursive definition of the factorial functionf : N→ N where:

(1) A is a standard theory of real arithmetic.

(2) ϕ is ∀n . f(n) = if(n = 0, 1, f(n− 1) ∗ n).

(3) � is the usual total order onN.

Mechanized mathematics systems—interactive computer systems for supporting and improving math-
ematical reasoning—usually provide their users with an implemented scheme for defining functions by
recursion. The designers of a mechanized mathematics system generally choose a proper scheme with eas-
ily checked instance requirements and a large domain. For example,HOL [9] implements a generalization
of primitive recursion andPVS [13] implements a scheme for defining total higher-order functions by well-
founded recursion. Although strictly partial functions are ubiquitous in mathematics and computer science,
nearly all implemented schemes for defining functions by recursion admit only total functions.

This paper describes a proper scheme for definingpartial (as well as total) higher-order functions by
recursion. In the scheme a function is defined as the least fixed point of amonotone functional, and a
system of functions is defined as the simultaneous least fixed point of asystem of monotone functionals.
The scheme is derived from an approach to recursion developed by Y. Moschovakis [12]. Moschovakis
presents the approach in his paper [12] using an informal second-order logic that admits undefined terms
and partial functions. Our scheme is presented within a formal higher-order logic calledLUTINS [2, 3, 4, 8]
that admits undefined terms and partial functions and that contains a definite description operator.

The scheme has been implemented and tested in theIMPS Interactive Mathematical Proof System [7, 8]
which hasLUTINS as its logic. IMPS is equipped with an automatic mechanism for syntactically checking
whether a functional is monotone. Many common functions can be defined inIMPS by functionals on
which the monotonicity check succeeds. As a result, defining functions inIMPS by recursion is usually
just a matter of writing down the appropriate functional: there are rarely any side conditions that need to
be proved. Although the scheme is presented withinLUTINS, it will work in other logics that admit partial
higher-order functions.
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The rest of the paper is organized as follows. Section 2 briefly introducesLUTINS, the logic of IMPS.
Section 3 states some of the key definitions concerning functionals and fixed points. The central theorem
underlying the scheme, a fixed point theorem for monotone functionals, is proved in section 4. The notion
of a recursive definition is defined in section 5. Section 6 presents some extensions to the basic scheme for
defining functions by recursion. How the scheme is implemented inIMPS is the subject of section 7. The
IMPS monotonicity check is described in section 8. The paper ends with a short conclusion in section 9 and
an appendix which presents a fixed point theorem for continuous functionals.

2 LUTINS

LUTINS2 is a nonconstructive version of simple type theory [1]. A formalization of the traditional approach
to partial functions [5], it admits undefined terms and partial functions and has a definite description opera-
tor I. LUTINS is also equipped with a system ofsortsfor classifying terms by value which is an extension of
the system of types.LUTINS closely corresponds to mathematics practice and has proven to be an effective
logic for formalizing traditional mathematics (e.g., see [6]).

The application of a term denoting a partial function to a term that denotes an argument outside of the
domain of the partial function is undefined. For example,2/0 and

√
−3 are undefined in a standard theory of

real arithmetic. The application of a term denoting a partial function to an undefined term is also undefined.
Undefined terms do not denote anything and are indiscernible from one another. The definite description
operator I is used to constructdefinite descriptions, that is, terms of the form(I x . ϕ). A term (I x . ϕ)
denotes the uniquex that satisfiesϕ if there is such anx and is undefined otherwise.

Although terms may be nondenoting,LUTINS is a bivalent logic: formulas are either true or false. In
particular, the application of a term denoting a predicate to an undefined term is always false. Most of the
laws of classical simple type theory hold inLUTINS without modification. However, the laws dealing with
instantiation and equality substitution are slightly different. For example, universal instantiation holds only
for defined terms.

A sort is a syntactic objectα that denotes a nonempty domainDα of values. Types are the maximal
sorts: every sort is a subtype of some type. Sorts are of either kindι or kind∗. A sort of the form

α1 × · · · × αn ⇀ αn+1

of kind ι wheren ≥ 1 denotes the domain ofn-ary partial functions fromDα1 × · · · ×Dαn toDαn+1 . A
sort of the form

α1 × · · · × αn → ∗

wheren ≥ 1 is of kind∗ and it denotes the domain ofn-ary total functions fromDα1 × · · · ×Dαn to ∗, the
sort denoting the domain{T, F} of truth values.

Every term is assigned a sort on the basis of its syntax. If a termt is assigned a sortα, then the value of
t is a member ofDα providedt is defined. A formula of the formt↓ assertst is defined, and(t ↓ α) asserts
that t is defined inα, i.e., thatt is defined with a value inDα. Sorts are also used to restrict the binding
operators ofLUTINS: λ, ∀, ∃, and I.

In LUTINS, = is a binary predicate that satisfies the usual axioms of equality. Like any other predicate,
if = is applied to an undefined term, the resulting expression is false. Hence,2/0 = 5 and

√
−3 =

√
−3

are both false in a standard theoryA of real arithmetic. An expression of the forms ' t is an abbreviation
2Pronounced as the word in French.
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for (s↓ ∨ t↓) ⊃ s = t, which asserts that eithers andt denote the same value ors andt both denote no
value. Hence,2/0 ' 5 is false and

√
−3 '

√
−3 is true inA. Note that' is not a predicate, just part of an

abbreviation.
A theoryof LUTINS is a pairT = (L,Γ) , whereL is a language ofLUTINS andΓ is a set of sentences

in L which serve as the axioms ofT .
For more information aboutLUTINS, see the references forLUTINS given above.

3 Preliminary Definitions

LetL be a language ofLUTINS. An expressionis an term or formula ofL. For the rest of the paper, let

α = α1 × · · · × αn ⇀ αn+1

be a sort of kindι wheren ≥ 1.
A functionalof sort α is an expression of sortα ⇀ α. A functional is in canonical formif it is a

lambda-expression. Given functionsg andh, g is asubfunctionof h if the domainDg of g is a subset of the
domain ofh andg equalsh onDg.

We define the following predicates inL.

Definition 3.1 (Subfunction) ∀ g, h : α . g vα h ≡
∀x1 : α1, . . . , xn : αn . g(x1, . . . , xn)↓ ⊃ g(x1, . . . , xn) = h(x1, . . . , xn).

An expressiong vα h asserts thatg andh denote functions of sortα such thatg is a subfunction ofh.

Proposition 3.2 vα is a partial order onα.

Definition 3.3 (Monotone) ∀F : α ⇀ α . monotoneα(F ) ≡
∀ g, h : α . g vα h ⊃ F (g) vα F (h).

Definition 3.4 (Fixed Point) ∀ f : α, F : α ⇀ α . fpα(f, F ) ≡ F (f) = f .

Definition 3.5 (Least Fixed Point) ∀ f : α, F : α ⇀ α . lfpα(f, F ) ≡
fpα(f, F ) ∧ (∀ g : α . fpα(g, F ) ⊃ f vα g).

Definition 3.6 (Strong Fixed Point) ∀ f : α, F : α ⇀ α . sfpα(f, F ) ≡
fpα(f, F ) ∧ (∀ g : α . F (g) vα g ⊃ f vα g).

Proposition 3.7 A functional has at most one least fixed point.

Proposition 3.8 A strong fixed point of a functional is a least fixed point of the functional.
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4 The Fixed Point Theorem

In this section we prove that every monotone functional has a strong fixed point. We begin by showing that
every monotone functionalF of sortα is total, i.e., defined for every member ofα.

Lemma 4.1 The sentence

∀F : α ⇀ α . monotoneα(F ) ⊃ ∀ f : α . F (f)↓

is valid inL.

Proof Let F andf be variables of sortα ⇀ α andα, respectively. We will assumemonotoneα(F )
and then deriveF (f) ↓. After expanding the definition ofmonotoneα and then instantiating the expanded
formula withf andf , we obtainf vα f ⊃ F (f) vα F (f). Sincevα is a partial order onα (by Propo-
sition 3.2) andf is defined inα, it follows thatF (f) vα F (f). The latter impliesF (f) ↓ sincevα is a
predicate.2

Theorem 4.2 (Fixed Point Theorem for Monotone Functionals)The sentence

∀F : α ⇀ α . monotoneα(F ) ⊃ ∃ f : α . sfpα(f, F )

is valid inL.

Proof Fix a modelM for L, and letXM be the denotation inM of an expression or sortX of L. LetF
be a functional of sortα and assume thatFM is monotone inM. We must show that there is a strong fixed
point ofFM inM.

For a functionf of sortα inM and an ordinalγ, defineF γM(f) inductively by:

(1) F 0
M(f) = f .

(2) F γ+1
M (f) = FM(F γM(f)).

(3) F δM(f) for a limit ordinalδ is the function represented by the set of ordered pairs

(〈a1, . . . , an〉, F γM(f)(a1, . . . , an))

whereγ < δ, 〈a1, . . . , an〉 ∈ (α1)M × · · · × (αn)M, andF γM(f)(a1, . . . , an) is defined.

The definition ofF γM(f) is well-defined sinceFM is monotone and hence total by Lemma 4.1.
Define4α to be the empty function of sortα inM andcard(S) to be the cardinality of a given setS.

Assume thatF γM(4α) is not a fixed point ofFM for all ordinalsγ. By this assumption, the monotonicity
of FM, and induction on the ordinals, we can show that

card(γ) ≤ card(domain(F γM(4α)))

for all ordinalsγ. Letκ = card((α1)M × · · · × (αn)M). Then

card(domain(F γM(4α))) ≤ κ

for all ordinalsγ. But then

κ+ 1 = card(κ+ 1) ≤ card(domain(F κ+1
M (4α))) ≤ κ,
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which is a contradiction.
We have thus shown that, for some ordinalγ, F γM(4α) is a fixed point ofFM. Let δ be the least ordinal

such thatF δM(4α) is a fixed point ofFM. We claim thatF δM(4α) is a strong fixed point ofFM. Let g be
any function of sortα inM such thatFM(g) vα g. Clearly,4α vα g, and so by the monotonicity ofFM,
F δM(4α) vα F δM(g) vα g. Therefore,F δM(4α) is a strong fixed point ofFM. 2

This fixed point theorem is related to the Knaster-Tarski fixed point theorem for complete partial
orders [11] and the Tarski fixed point theorem for complete lattices [16].

A fixed point theorem with a stronger conclusion can be obtained if “monotone functional” is replaced
with “continuous functional”. See the appendix for details. Continuous functionals are a popular device
in computer science for defining functions by recursion, and in particular, they are a basic component of
denotational semantics [14, 15].

5 Recursive Definitions

We can now present our scheme for defining (partial higher-order) functions inLUTINS by recursion.
A recursive definitionin the scheme is a tripleR = (T , f, F ) where:

(1) T = (L,Γ) is a theory ofLUTINS.

(2) f is a constant of sortα that is not a member ofL.

(3) F is a functional of sortα that is monotone inT .

Thedefining axiomof R is sfpα(f, F ). Thedefinitional extension resulting fromR is the extension ofT
obtained by addingf toL and the defining axiom ofR to Γ.

In the examples below, letA be a standard theory of real arithmetic andN, Z, andR be the sorts inA of
the natural numbers, the integers, and the real numbers, respectively.

Example 5.1 The term

F = λ f : N ⇀ N . λ n : N . if(n = 0, 1, f(n− 1) ∗ n)

is a monotone functional inA of sortN ⇀ N. The recursive definition(A, !, F ) defines the factorial function
in A (where ! is a constant of sortN ⇀ N not inL).

Example 5.2 The term

F = λσ : Z × Z × (Z ⇀ R) ⇀ R .

λm, n : Z, f : Z ⇀ R . if(m ≤ n, σ(m,n− 1, f) + f(n), 0)

is a monotone functional inA of sort

Z × Z × (Z ⇀ R) ⇀ R.

The recursive definition(A,Σ, F ) defines the function inA that gives the summation of a function of sort
Z ⇀ R over a finite segment of integers (whereΣ is a constant of sortZ × Z × (Z ⇀ R) ⇀ R not inL).
(Σ(m,n, f) would usually be written

∑n
i=m f(i).)
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Example 5.3 The term

F = λ f : Z ⇀ Z . λ n : Z . f(n)

is a monotone functional inA of sort Z ⇀ Z. Notice that every function of sortZ ⇀ Z is a fixed point
of F . Thus, the recursive definition(A,4Z⇀Z , F ) defines the empty function of sortZ ⇀ Z in A (where
4Z⇀Z is a constant of sortZ ⇀ Z not inL).

Example 5.4 The term

F = λ f : Z ⇀ Z . λ n : Z . f(n) + 1

is a monotone functional inA of sort Z ⇀ Z. Notice that the empty function of sortZ ⇀ Z is the only
fixed point ofF . Thus, the recursive definition(A,4Z⇀Z , F ) defines the empty function of sortZ ⇀ Z in
A (where4Z⇀Z is a constant of sortZ ⇀ Z not inL).

The theorem below shows that recursive definitions are merely a convenience: they do not allow any
new functions to be defined that could not be defined by direct means.3

Theorem 5.5 Let T be a LUTINS theory. A function can be directly defined inT by a term iff it can be
recursively defined inT by a monotone functional.

Proof Let f be a constant of sortα. Assumef is directly defined inT by a termt of sortα. Thent ↓
holds inT , f does not occur int, and the defining axiom isf = t. Let F beλ f : α . t. F is a monotone
functional sincet↓ holds inT andf does not occur int. Clearly,t is the unique fixed point ofF . Hence,f
is recursively defined inT by F .

Now assumef is recursively defined inT by a monotone functionalF . Then the defining axiom is
sfpα(f, F ). Let t be

I f : α . sfpα(f, F ).

Clearly,t↓ holds inT . Hence,f is directly defined inT by t. 2

6 Extensions

Our scheme for recursively defining functions inLUTINS can be extended in three ways.
First, the notion of defining a single function by recursion can be straightforwardly generalized to the

notion of defining a system of functions by mutual recursion. Arecursive definitionis redefined to be a
triple

R = (T , 〈f1, f2, . . . , fn〉, 〈F1, F2, . . . , Fn〉)

where:

(1) T = (L,Γ) is a theory ofLUTINS.

(2) n ≥ 1.
3SinceLUTINS is a higher-order logic with a definite description operator, any function that can be defined indirectly by a formula can also be

defined directly by a term that is a definite description.

3rd Irish Workshop on Formal Methods, 1999 7



A Scheme for Defining Partial Higher-Order Functions by Recursion

(3) For alli with 1 ≤ i ≤ n:

(a) fi is a constant of sortαi that is not a member ofL.

(b) Fi is an expression of sortα1× · · ·×αn ⇀ αi that is monotone with respect to itsith argument
in T .

Thedefining axiomofR says that〈f1, f2, . . . , fn〉 is a “simultaneous strong fixed point” of〈F1, F2, . . . , Fn〉.
Thedefinitional extension resulting fromR is the extension ofT obtained by addingf1, f2, . . . , fn toL and
the defining axiom ofR to Γ.

Second, recursive definitions can be allowed to contain parameters. A recursive definition (of a single
function) with parameters of sortπ1, . . . , πm defines a constantf of sortπ1 × · · · × πm ⇀ α by means of
a “parameterized functional”F of sortα × π1 × · · · × πm ⇀ α that is monotone with respect to its first
argument. Thedefining axiomof the definition is the sentence

∀ p1 : π1, . . . , pm : πm . sfpα(f(p1, . . . , pm), λ g : α . F (g, p1, . . . , pm))

which says that each instance off is a strong fixed point of the corresponding instance ofF .

Example 6.1 The triple

(A,Σ′, F ),

where

F = λσ : Z × (Z ⇀ R) ⇀ R,m : Z .

λ n : Z, f : Z ⇀ R . if(m ≤ n, σ(n− 1, f) + f(n), 0),

is a recursive definition of the summation functionΣ defined in Example 5.2 with the first argument treated
as a parameter. Notice thatΣ(m,n, f) = Σ′(m)(n, f).

Example 6.2 Let sets(N) be the sort of sets of natural numbers inA. The triple

(A,omega embedding, F ),

where

F = λ f : N ⇀ N, a : sets(N) . λ k : N .

if(k = 0,
I n : N . n ∈ a ∧ (∀m : N . m < n ⊃ ¬(m ∈ a)),
I n : N . n ∈ a ∧ f(k − 1) < n ∧

(∀m : N . (f(k − 1) < m ∧m < n) ⊃ ¬(m ∈ a))),

is a recursive definition with a parameter oversets(N). Let a be an expression defined insets(N). Then
omega embedding(a) maps the natural numbers to the members ofa such thati is mapped to theith
member ofa for all i with with 0 ≤ i < card(a). omega embedding(a) is total iff card(a) is infinite.
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Third, a scheme for defining predicates by recursion can be obtained by modifying the scheme for
defining functions by recursion described above. Let

β = β1 × · · · × βn → ∗

be a sort of kind∗ wheren ≥ 1. A predicateof sortβ is a total function of sortβ. In the recursive definition
scheme for predicates, thesubpredicaterelation defined below is used in place of thesubfunctionrelation
defined above.

Definition 6.3 (Subpredicate) ∀ g, h : β . g ⊆β h ≡
∀x1 : β1, . . . , xn : βn . g(x1, . . . , xn) ⊃ h(x1, . . . , xn).

Example 6.4 The recursive definition(A, 〈even,odd〉, 〈F1, F2〉), where

F1 = λ e, o : N→ ∗ . if(n = 0,T, o(n− 1))

and

F2 = λ e, o : N→ ∗ . if(n = 0,F, e(n− 1),

defines inA the predicates even and odd on the natural numbers by mutual recursion. (T denotes true andF
denotes false.)

7 Implementation in IMPS

Suppose that anIMPS user would like to define a new constantf in a theoryT to be the function defined
by a (presumably monotone) functionalF in T . The user will submit the triple(T , f, F ) to IMPS, and then
IMPS will perform the following steps:

(1) Check thatf is a constant of a function sortα that is not currently inT or in a structural supertheory
of T .

(2) Check thatF is a functional inT in canonical form of sortα.

(3) Check thatF is known to be monotone inT .

(4) If the checks above are successful, add the constantf to the language ofT , add the formulasfpα(f, F )
to the axioms ofT , and install the formulalfpα(f, F ) in T as a theorem.

IMPS knows thatF is monotone inT if monotoneα(F ) has been installed inT as theorem or if the
monotonicity check described in the next section succeeds onF .

8 The Monotonicity Check

For an expressionE and variablesx, y, defineE[x 7→ y] to be the result of replacing each free occurrence
of x in E with y. Let f , g, andh be variables of sortα, and letE be an expression that contains neitherg
norh. E is f -stablein an IMPS theoryT if

(g vα h ∧ E[f 7→ g]↓) ⊃ E[f 7→ g] = E[f 7→ h]

is valid inT . Notice that, ifE is f -stable andg vα h, then eitherE[f 7→ g] is undefined orE[f 7→ g] and
E[f 7→ h] are equal. Notice also thatf itself is notf -stable.
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Lemma 8.1 (Stability Lemma) Let

F = λ f : α . λ x1 : α1, . . . , xn : αn . B

be a functional of sortα in a theoryT . Thenmonotoneα(F ) is valid inT providedB is f -stable inT .

Proof SupposeB is f -stable inT , andg andh are variables of sortα not occurring inB. Then

(g vα h ∧ B[f 7→ g]↓) ⊃ B[f 7→ g] = B[f 7→ h]

is valid inT . This implies

g vα h ⊃
λx1 : α1, . . . , xn : αn . B[f 7→ g] vα λx1 : α1, . . . , xn : αn . B[f 7→ h]

is valid inT , and henceg vα h ⊃ F (g) vα F (h) is valid inT . Therefore,monotoneα(F ) is valid inT .
2

The following four lemmas are easy to prove:

Lemma 8.2 If f is not free inE, thenE is f -stable inT .

Lemma 8.3 if(ϕ, s, t) is f -stable inT if f is not free inϕ and boths andt aref -stable inT .

Lemma 8.4 f(A1, . . . , An) is f -stable inT if Ai is f -stable inT for all i with 1 ≤ i ≤ n.

Lemma 8.5 E(B1, . . . , Bm) is f -stable inT if E is f -stable inT andBi is f -stable inT for all i with
1 ≤ i ≤ m.

Given a functional

F = λ f : α . B

in canonical form of sortα in a theoryT , theIMPS monotonicity check works as follows. First, a functional

F ′ = λ f : α . λ x1 : α1, . . . , xn : αn . B(x1, . . . , xn)

is constructed such thatF = F ′ is valid in T . Second, the applicationB(x1, . . . , xn) is beta-reduced (in
T ), yielding a possibly new expressionB′. Lastly, the four lemmas above are repeatedly applied toB′ in a
purely syntactic manner until eitherB′ is shown to bef -stable inT or else no more applications of the four
lemmas are possible. In the former case, the check succeeds and the functionalF is then monotone inT
by the Stability Lemma. In the latter case, the check fails and nothing is implied about whether or notF is
monotone inT .

The IMPS monotonicity check succeeds on the functionals given in Examples 5.1, 5.2, 5.3, 5.4, and 6.1
but does not succeed on the functional given in Example 6.2 because the variablef is free in the body of the
second definite description. Notice that the functional

F ′ = λ f : N ⇀ N, a : sets(N) . λ k : N .

if(k = 0,
I n : N . n ∈ a ∧ (∀m : N . m < n ⊃ ¬(m ∈ a)),
(λ z : N . I n : N . n ∈ a ∧ z < n ∧

(∀m : N . (z < m ∧m < n) ⊃ ¬(m ∈ a)))(f(k − 1))),
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is the same as the functionalF given in Example 6.2 except thatF ′ contains a non-beta-reduced lambda-
application for the form

(λ z : N . . . )(f(k − 1)).

As a result, the variablef is moved into a position so that the monotonicity check succeeds onF ′. Since

∀ f . sfpα(f, F ) ≡ sfpα(f, F ′)

is valid inT , F ′ can be used to defineomega embedding instead ofF .
This trick is often useful for transforming a functional on which the monotonicity check fails to an

“equivalent” functional on which the check succeeds. In our experience, nearly all recursive definitions that
arise naturally have functionals on which the monotonicity check succeeds directly or via a transformation
by means of this trick.

There is a monotonicity check for functionals that define predicates by (mutual) recursion which is
similar to the monotonicity check described in this section for functionals that define functions by (mutual)
recursion.

9 Conclusion

We have presented in the logicLUTINS a proper scheme for defining partial higher-order functions by
recursion. An instance of the scheme is a triple(T , f, F ) whereT is a theory ofLUTINS, f is a constant of
a function sortα, andF is a functional of sortα that is monotone inT . The instance(T , f, F ) definesf
to be the strong fixed point ofF in T . The domain of the scheme is exactly the set of functions that can be
directly defined inLUTINS. We have described three extensions of the scheme and an automatic syntactic
check for monotonicity that succeeds for many common recursive definitions. The scheme, with the three
extensions and the check for monotonicity, has been implemented in theIMPS Interactive Mathematical
Proof System.

Appendix: Continuous Functionals

This appendix presents a fixed point theorem for continuous functionals which has a stronger conclusion
than Theorem 4.2, a fixed point theorem for monotone functionals.

Let sets(α) be the sort of sets of elements ofα.

Definition 9.1 (Chain) ∀S : sets(α) . chainα(S) ≡
∀ g, h : α . (g ∈ S ∧ h ∈ S) ⊃ (g vα h ∨ h vα g).

Definition 9.2 (Least Upper Bound) ∀S : sets(α) . lubα(S) '
I f : α . (∀ g ∈ S ⊃ g vα f) ∧ ((∃ f ′ : α . ∀ g ∈ S ⊃ g vα f ′) ⊃ f vα f ′).

Proposition 9.3 The least upper bound of a chain is always defined.

Definition 9.4 (Continuous) ∀F : α ⇀ α . continuousα(F ) ≡
monotoneα(F ) ∧ ∀S : sets(α) . chainα(S) ⊃ F (lubα(S)) = lubα({F (g) : g ∈ S}).

3rd Irish Workshop on Formal Methods, 1999 11



A Scheme for Defining Partial Higher-Order Functions by Recursion

For a functionalF and a nonnegative integeri, letF i(g) be an abbreviation forF (· · · (F (g)) · · ·) where
F occursi times.

Theorem 9.5 (Fixed Point Theorem for Continuous Functionals)If 4α is the term

λx1 : α1, . . . , xn : αn . I y : αn+1 . ¬(y = y)

(which denotes the empty function of sortα) andf is the term

lub({F i(4α) : 0 ≤ i}),

then the sentence

∀F : α ⇀ α . continuousα(F ) ⊃ sfpα(f, F )

is valid inL.

Proof By the definition off ,

F (f) = F (lub({F i(4α) : 0 ≤ i})).

SinceF is monotone,{F i(4α) : 0 ≤ i} is a chain, and so by the definition of a continuous functional,

F (lub({F i(4α) : 0 ≤ i})) = lub({F (F i(4α)) : 0 ≤ i})
= lub({F i(4α) : 1 ≤ i})
= f.

Hence,f is a fixed point ofF .
We claim thatf is a strong fixed point ofF . Let g be any function of sortα such thatF (g) vα g.

Clearly,4α vα g, and so by the monotonicity ofF , F i(4α) vα F i(g) vα g for all i with 0 ≤ i.
Therefore,

f = lub({F i(4α) : 0 ≤ i}) vα g.
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