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Abstract

We propose a general method for overwriting theories with model
conservative extensions in mechanized mathematics systems. Model
conservative extensions, which include the definition of new constants
and the introduction of new abstract datatypes, are “safe” because
they preserve models as well as consistency. The method employs
the notions of theory interpretation and theory instantiation. It is
illustrated using many-sorted first-order logic, but it works for a variety
of underlying logics.
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1 Introduction

Mathematical reasoning is always performed in some mathematical context
consisting of vocabulary and assumptions. The formal counterpart of a
context is a theory consisting of a formal language plus a set of sentences of
the language called axioms. (We will denote a theory T by the pair (L,Γ)
where L is the formal language of T and Γ is the set of axioms of T .) An
extension of a theory T is any theory T ′ obtained by adding new vocabulary
and axioms to T . That is, T ′ = (L′,Γ′) is an extension of T = (L,Γ), written
T ≤ T ′, if L is a sublanguage of L′ and Γ ⊆ Γ′. (When we use the word
“extension” by itself, without reference to the theory being extended, we
will mean a pair (T, T ′) of theories such that T ≤ T ′.) Theory extension is
the process in formal reasoning by which new concepts are created and new
structure is introduced.

A mechanized mathematics system (MMS) is a computer environment
that is intended to support and improve rigorous mathematical activity.
MMSs include mechanical theorem provers and systems for specifying and
verifying computer software and hardware. Nearly all MMSs provide tools
for building and extending theories. An application of an MMS—such as the
development of a formal software specification—usually involves the creation
of many theory extensions. If each theory extension is represented as a
distinct theory, the user of the MMS can easily become overwhelmed by
the number of theories that he or she must contend with. The proliferation
of theories is often controlled in MMSs by “overwriting” theories with their
extensions. (After T is overwritten with T ′, all references to T automatically
become references to T ′, so T effectively becomes T ′ in the MMS.) It is
not safe, however, to overwrite a theory every time it is extended because
an extension may compromise the machinery of the original theory. For
instance, an extension may add an axiom that renders the original theory
inconsistent.

The danger of overwriting a theory with an “unsafe” extension is avoided
in MMSs by restricting overwriting to extensions that are known to preserve
the semantics of the original theory. Extensions of this kind are called “con-
servative” extensions. Actually, there are two distinct notions of a conser-
vative extension. Let T ≤ T ′. T ′ is a model conservative extension of T if
every model of T expands to a model of T ′.1 T ′ is a consequence conser-

1A precise definition of the “expansion” of a model (in many-sorted first-order logic)
is given in Section 3.

2



vative extension of T if T ′ |= A implies T |= A whenever A is a sentence
of the language of T .2 In predicate logic, model conservativity is strictly
stronger than consequence conservativity, i.e., every model conservative ex-
tension is consequence conservative, but there are consequence conservative
extensions which are not model conservative (see [3, 22, 20]). Both model
and consequence conservativity preserve semantic consistency, i.e., if T ′ is a
model or consequence conservative extension of T and there is a model for
T , then there is a model for T ′.

Let T � T ′ mean that T ′ is a model conservative extension of T . We
shall assume that it is safe to overwrite a theory T with another theory
T ′ iff T � T ′. This is a reasonable assumption for two reasons. First,
model conservativity is sufficiently strong: both models and consequences
are preserved. Second, model conservativity is sufficiently weak: in practice,
nearly all MMSs restrict overwriting to model conservative extensions (if
they restrict overwriting at all).

For the rest of this section, let T = (L,Γ) and T ′ = (L′,Γ′) be theories
in some (first-order or higher-order) predicate logic L.

The most important kind of model conservative extension in predicate
logic formalizes the practice of giving names to objects that are known to
exist. Assume T ≤ T ′ such that:

• L′ is L plus some new constants c1, . . . , cm.

• Γ′ = Γ ∪ {A(c1, . . . , cm)}, where A(c1, . . . , cm) contains c1, . . . , cm.

T ′ is a nominal extension of T if

T ′ |= ∃x1 . . . ∃xm . A(x1, . . . , xm).3

It is easy to see that any nominal extension is model conservative.
T ′ is a definitional extension of T if

T ′ |= ∃!x1 . . . ∃!xm . A(x1, . . . , xm).4

Definitional extensions are extremely safe: when T ′ is a definitional exten-
sion of T , the following two properties hold:

2T |= A means A is valid in every model for T .
3Or an equivalent sentence; for example, if m = 1 and c1 is an n-ary function sym-

bol in first-order logic, then the sentence would have the form ∀x1 . . . ∀xn∃y . A′ since
∃x1 . A(x1) would not be a first-order sentence.

4∃!x . A(x) means ∃x . (A(x) ∧ ∀y . (A(y) ⊃ x = y)).
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• T ′ is a strong model conservative extension of T , that is, every model
for T expands to a unique model for T ′ (up to isomorphism).

• The constants introduced by T ′ can be eliminated: for every formula
B′ of L′, there is some formula B of L such that T ′ |= B′ ≡ B.

Another important kind of model conservative extension, which is em-
ployed in many-sorted predicate logic, introduces a new structured collection
of objects—what is called an “algebra” in mathematics and an “abstract
datatype” in computer science. Let T ≤ T ′. T ′ is a datatype extension of T
if L′ is L plus a new sort α and some new constants c1, . . . , cm. α is intended
to denote a nonempty set O of objects and c1, . . . , cm are intended to denote
members of O and operations that involve members of O. Datatype exten-
sions are used extensively in formal reasoning and, in practice, are usually
model conservative.

Define a model conservative extension type (mce-type) to be a pair (∆, θ)
where ∆ is a set of extensions and θ is a function from ∆ to sentences such
that, for all (T, T ′) ∈ ∆, if T |= θ(T, T ′), then T � T ′. Let τ = (∆, θ) be
an mce-type. The domain of τ , written dom(τ), is the set {(T, T ′) ∈ ∆ :
T |= θ(T, T ′)}. An mce-type τ is definitional if each extension in dom(τ)
is definitional. An MMS S supports τ if it includes a procedure that works
more or less as follows. Suppose that a user of S would like to overwrite a
theory T with a theory T ′. The user calls the procedure with arguments T
and T ′. The procedure first checks whether (T, T ′) ∈ ∆. If so, the procedure
tries to verify that T |= θ(T, T ′). If it is successful, it overwrites T with T ′.
If (T, T ′) 6∈ ∆ or if it cannot verify that T |= θ(T, T ′), T is not overwritten
with T ′.

A typical MMS supports just a small set of mce-types. Most often this set
contains only definitional mce-types and is fixed and cannot be extended by
the user. A few MMSs support mce-types that are not definitional, including
m-eves [4], eves [5], and hol [14].5 For almost all MMSs, including those
that support nondefinitional mce-types, there are many model conservative
extensions which are not in the domain of any of the supported mce-types.

Example 1.1 (Type of direct definitional extensions) T ′ is a direct
definitional extension of T if L′ is L plus a new constant c and Γ′ = Γ∪{c =
E}, where E is a closed expression of L. Since ∃!x . x = E is universally

5
nqthm [1], the so-called Boyer-Moore theorem prover, allows nondefinitional, record-

like abstract datatypes called “shells” to be added to a theory. However, the resulting
extensions are consequence, but not model, conservative.
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valid in standard predicate logic for every expression E, every direct def-
initional extension is definitional and hence strongly model conservative.
Define τ = (∆, θ) to be the mce-type where ∆ is the set of direct defini-
tional extensions of L and θ(T, T ′) = TL, some universally valid sentence of
L. Notice that, as a result of ∆ being such a restricted set of extensions,
it is trivial to verify that a member of ∆ is a member of dom(τ) (since
dom(τ) = ∆). This mce-type, the type of direct definitional extensions, is
supported in most MMSs in which theories may be overwritten. 2

Example 1.2 (Type of nominal extensions) Define (∆, θ) to be the
mce-type where ∆ is the set of nominal extensions of L and

θ(T, T ′) = ∃x1 . . . ∃xm . A(x1, . . . , xm),

where A(c1, . . . , cm) is the new axiom of T ′. Notice that, as a result of ∆
being such an unrestricted set of extensions, it can be very difficult to verify
that a member of ∆ is a member of dom(τ). This mce-type, the type of nom-
inal extensions, is supported by the hol theorem proving environment [14].
2

This paper describes a general method for overwriting theories with
model conservative extensions in MMSs. The method allows the user to add
new mce-types to the set of mce-types supported by an MMS. It employs the
notions of theory interpretation and theory instantiation. An interpretation
of T in T ′ is a translation from the expressions of T to the expressions of
T ′ which preserves the validity of sentences (see [6, 8, 18]). Given T ≤ T ′,
an instance of T ′ via an interpretation Φ of T in a theory U is the result of
using Φ to “instantiate” T in T ′ with U (see [2, 13]).

The following are the basic ingredients of the method. A user-defined
mce-type τ is represented as a model conservative extension (T, T ′) (where
T and T ′ are generally as abstract as possible). T � T ′ must be shown
before τ can be added to the set of supported mce-types. By the Model
Conservative Verification Theorem (see Section 4), the user can show T �T ′

by exhibiting an interpretation of T ′ in T that fixes T . (U,U ′) ∈ dom(τ)
if U ′ is an instance of T ′ via an interpretation of T in U . By the Model
Conservative Instantiation Theorem (see Section 5), every such instance of
T ′ is a model conservative extension of U since T �T ′. To overwrite U with
U ′, the user simply gives the MMS the appropriate interpretation Φ of T in
U , then the MMS automatically constructs U ′ from T ′ and Φ, and finally
the MMS overwrites U with U ′.
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For the sake of clarity, the method is illustrated using many-sorted first-
order logic, but it works for a variety of underlying logics, especially highly
expressive logics such as simple type theory. (The method is partially im-
plemented in the imps Interactive Mathematical Proof System [9, 11], which
is based on the logic lutins [7, 8, 15]—a version of simple type theory with
partial functions and subtypes.)

The bulk of the paper lays the logical foundation for the method. Sec-
tion 2 presents a version of many-sorted first-order logic called MS. Sec-
tion 3 discusses theory extension in MS. And Section 4 and Section 5 defines
theory interpretation and theory instantiation for MS, respectively. Then
the method itself is described in Section 6. The paper ends with a brief
conclusion.

2 Many-sorted first-order logic

This section presents a version of many-sorted first-order logic (with equal-
ity) called MS. We begin by defining Ω(S), which is intended to denote the
set of sorts built from a set S of base sorts.

Let S be a set of symbols with ∗ ∈ S. S− = S \ {∗} and Ω(S) is the set
defined inductively by:

(1) S ⊆ Ω(S).

(2) If α1, . . . , αn ∈ S− and β ∈ S (n ≥ 1), then [α1, . . . , αn, β] ∈ Ω(S).

An S-tagged symbol is a symbol tagged with a member of Ω(S). A tagged
symbol whose symbol is a and whose tag is α is written aα. A tagged symbol
aα, where a = bi, will be written as biα (instead of as (bi)α). Two tagged
symbols aα and bβ are distinct if a 6= b.

A language of MS is a tuple (B,V, C) such that:

(1) B is finite set of symbols called base sorts such that ∗ ∈ B and B− is
nonempty. (∗ is the sort of truth values.)

(2) V and C are disjoint countable sets of pairwise distinct B-tagged sym-
bols whose members are called variables and constants, respectively.

(3) For each xα ∈ V, α ∈ B−.

(4) For each α ∈ B−, there is an infinite subset Vα of V such that xβ ∈ Vα
iff β = α.
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cα is an individual constant if α ∈ B, a function constant if α =
[α1, . . . , αn, β] with β 6= ∗, and a predicate constant if α = [α1, . . . , αn, ∗].

For the remainder of this section, let L = (B,V, C) be a language of MS.
When there is no possibility of confusion, the components of a language Li
will be denoted by Bi,V i, Ci. A language L1 is a sublanguage of a language
L2, written L1 ≤ L2, if B1 ⊆ B2, V1 ⊆ V2, and C1 ⊆ C2.

A sort of L is a member of Ω(B). An expression of L of sort α ∈ B is
defined inductively by:

(1) Each xα ∈ V and individual constant cα ∈ C is an expression of sort
α.

(2) If c[α1,...,αn,β] ∈ C and E1, . . . , En are expressions of sort α1, . . . , αn,
then c[α1,...,αn,β](E1, . . . , En) is an expression of sort β.

(3) If E1 and E2 are expressions of the same sort, (E1 = E2) is an expres-
sion of sort ∗.

(4) If E1 and E2 are expressions of sort ∗, then ¬E1 and (E1 2 E2) are
expressions of sort ∗ for 2 ∈ {∧,∨,⊃,≡}.

(5) If xα ∈ V and E is an expression of sort ∗, then ∀xα . E and ∃xα . E
are expressions of sort ∗.

A term of L of sort α is an expression of L of sort α ∈ B−, and a formula of
L is an expression of L of sort ∗. The set of expressions of L [respectively,
Li] is denoted by E [respectively, E i]. “Free variable”, “closed expression”,
and similar notions are defined in the obvious way. A sentence is a closed
formula. Parentheses in expressions may be suppressed when meaning is
not lost.

A λ-expression of L of sort [α1, . . . , αn, β] has the form

λ{x1
α1
, . . . , xnαn . E}

where x1
α1
, . . . , xnαn are distinct members of V and E is an expression of L

of sort β. Given a λ-expression λ{x1
α1
, . . . , xnαn . E} and terms t1, . . . , tn of

sort α1, . . . , αn, λ{x1
α1
, . . . , xnαn . E}(t1, . . . , tn) denotes the result of simul-

taneously substituting ti for all free occurrences of xiαi in E, for all i with
1 ≤ i ≤ n (which is an expression of the sort of E). The set of λ-expressions
of L [Li] is denoted by Λ [Λi].

A frame for B is a set {Dα : α ∈ B} of nonempty domains (sets) where
D∗ = {t, f} is the domain of truth values. A model for L is a pair M =
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({Dα : α ∈ B}, I) where {Dα : α ∈ B} is a frame for B and I is a function
defined on C such that:

(1) If cα ∈ C is an individual constant, I(cα) ∈ Dα.

(2) If c[α1,...,αn,β] ∈ C is a function or predicate constant, then
I(c[α1,...,αn,β]) ∈ Dα1 × · · · × Dαn → Dβ .

A V-assignment intoM is a function which maps each xα ∈ V to an element
of Dα. There is a binary valuation function V = VM—defined in the obvious
way—such that, for all V-assignments ϕ into M and all E ∈ E ∪ Λ, the
following statements hold:

(1) If E is an expression of L of sort α, then Vϕ(E) ∈ Dα.

(2) If E is a λ-expression of L of sort [α1, . . . , αn, β], then Vϕ(E) ∈
Dα1 × · · · × Dαn → Dβ.

Vϕ(E) is the value of E inM with respect to ϕ. A formula A of L is valid in
M if Vϕ(A) = t for every V-assignment ϕ into M. For a closed E ∈ E ∪ Λ,
Vϕ(E) does not depend on ϕ and thus V (E) is meaningful.

A theory of MS is a pair T = (L,Γ) where L is a language of MS and
Γ is a set of sentences of L. A model for T is a model M for L such that
every member of Γ is valid inM. T is satisfiable (or semantically consistent)
if there is some model for T . A formula A is a (semantic) theorem of T ,
written T |= A, if A is valid in every model for T . T, T ′, etc. denote theories
of MS.

3 Theory extension

Let Ti = (Li,Γi) for i = 1, 2. T2 is an extension of T1 (and T1 is a subtheory
of T2), written T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.

Example 3.1 (Idempotent function constant) Let S1 = (L, ∅), where

L = (B,V, ∅) = ({α, ∗}, {xiα : i ∈ ω}, ∅),

be a theory of one abstract sort, and let

I = ((B,V, {f[α,α]}), {∀xα . f[α,α](f[α,α](xα)) = f[α,α](xα)})

be a theory of an abstract idempotent function constant. Obviously, S1 ≤ I.
2

8



Example 3.2 (Cartesian product) Let S2 = (L, ∅), where

L = (B,V, ∅) = ({α1, α2, ∗}, {xiα1
, yiα2

: i ∈ ω}, ∅),

be a theory of two abstract sorts, and let P = (L′,Γ), where

L′ = (B ∪ {γ},V ∪ {ziγ : i ∈ ω}, {p[α1,α2,γ], π
1
[γ,α1], π

2
[γ,α2]}),

be a theory of an abstract cartesian product. (p[α1,α2,γ] is the constructor,
and π1

[γ,α1], π
2
[γ,α2] are the selectors.) Obviously, S2 ≤ P . 2

Example 3.3 (Vector space) Let F = (L,Γ), where

L = (B,V, C) = ({f , ∗}, {xif : i ∈ ω}, {0f , 1f ,+[f ,f ,f ], ∗[f ,f ,f ]}),

be a theory of an abstract field, and let V = (L′,Γ ∪ Γ′), where

L′ = (B ∪ {v},V ∪ {yiv : i ∈ ω}, C ∪ {0v,+[v,v,v], ∗[f ,v,v]}),

be a theory of an abstract vector space. Obviously, F ≤ V . 2

If L1 ≤ L2 and Mi = ({Diα : α ∈ Bi}, Ii) is a model for Li for i = 1, 2,
then M2 is an expansion of M1 to L2 (and M1 is the reduct of M2 to L1)
provided D1

α = D2
α for all α ∈ B1 and I1 is a subfunction of I2. T2 is a model

conservative extension of T1, written T1�T2, if T1 ≤ T2 and, for every model
M1 for T1, there is a model for T2 which is an expansion of M1. We will
see in the next section that the extensions in the previous three examples
are model conservative.

The following two basic lemmas about model conservative extensions are
very easy to prove:

Lemma 3.4 (Transitivity) If T1 � T2 � T3, then T1 � T3.

Lemma 3.5 (Reductivity) If T1 ≤ T2 ≤ T3 and T1 � T3, then T1 � T2.

The next example shows that the other possible conclusion of the previ-
ous lemma does not hold.

Example 3.6 Let

L = (B,V, ∅) = ({α, ∗}, {xiα : i ∈ ω}, ∅)

and
L′ = (B,V, {aα, bα}).

Define T1 = (L, ∅), T2 = (L′, ∅), and T3 = (L′, {aα = bα}). Obviously,
T1 ≤ T2 ≤ T3, T1 � T2, and T1 � T3 hold, but T2 � T3 does not hold. 2
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4 Theory interpretation

This section presents the concept of an interpretation of one MS theory in
another. Our approach adapts a combination of the approaches in [6, 17, 18]
for many-sorted first-order logic. (See also [8, 16].)

An interpretation of a theory is determined by how the primitive symbols
of the theory (i.e., the base sorts, variables, and constants of the theory) are
interpreted. In the definition given here, base sorts are interpreted by sorts
or closed λ-expressions of sort [α, ∗] with α ∈ B− (i.e., unary predicates);
variables are interpreted by variables; and constants are interpreted by con-
stants, expressions, or λ-expressions. The set of closed λ-expressions of L
[Li] of sort [α, ∗] with α ∈ B− is denoted by U [U i].

Let Ti = (Li,Γi) for i = 1, 2. Given a function µ : B1 → B2 ∪ U2 and
α ∈ B1, µ[α] denotes the member of B2 defined by

µ[α] =

{
µ(α) if µ(α) ∈ B2

β if µ(α) = λ{xβ . E} ∈ U2

A translation Φ from T1 to T2, written Φ : T1 → T2, is a pair (µ, ν) where
µ : B1 → B2 ∪ U2 and ν : V1 ∪ C1 → C2 ∪ E2 ∪ Λ2 such that:

(1) µ(α) = ∗ iff α = ∗.

(2) For all xα ∈ V1, ν(xα) is a variable of sort µ[α].

(3) ν is injective on V1.

(4) If cα ∈ C1 is an individual constant, then ν(cα) is a closed expression
of sort µ[α].

(5) If c[α1,...,αn,β] ∈ C1 is a function or predicate constant,
then ν(c[α1,...,αn,β]) is a constant or closed λ-expression of sort
[µ[α1], . . . , µ[αn], µ[β]].

T1 and T2 are called the source and target theories of Φ, respectively.
Given E ∈ E1, Φ(E) denotes the member of E2 defined inductively by:

(1) Φ(aα) = ν(aα), where aα is a variable or individual constant.

(2) Φ(c[α1,...,αn,β](t1, . . . , tn)) = ν(c[α1,...,αn,β])(Φ(t1), . . . ,Φ(tn)).

(3) Φ(¬A) = ¬Φ(A).
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(4) Φ(A 2 B) = (Φ(A) 2 Φ(B)), where 2 ∈ {=,∧,∨,⊃,≡}.

(5) Φ(∀xα . A) =

{
∀ν(xα) . Φ(A) if µ(α) ∈ B2

∀ν(xα) . (µ(α)(xα) ⊃ Φ(A)) if µ(α) ∈ U2

(6) Φ(∃xα . A) =

{
∃ν(xα) . Φ(A) if µ(α) ∈ B2

∃ν(xα) . (µ(α)(xα) ∧ Φ(A)) if µ(α) ∈ U2

If E ∈ E1 is of sort α, then Φ(E) is of sort µ[α].
An obligation of Φ is any sentence Φ(A) where A is one of the following

theorems of T1:

(1) An axiom of T1.

(2) ∃xα . (xα = xα) where α ∈ B−1 .

(3) ∃xα . (cα = xα) where cα is an individual constant in C1.

(4) ∀x1
α1
. ∀x2

α2
. . . ∀xnαn . ∃yβ . (c[α1,...,αn,β](x1

α1
· · ·xnαn) = yβ)

where c[α1,...,αn,β] is a function constant in C1.

The four kinds of obligations are called, in order, axiom, sort nonemptiness,
individual constant sort , and function constant sort obligations. Note: The
last three kinds of obligations are trivial theorems of T2 unless there are
sorts in A which are mapped into U2 by µ.

Let Φ = (µ, ν) : T1 → T2 and Φ′ = (µ′, ν ′) : T ′1 → T ′2 be translations.
Φ′ is an extension of Φ, written Φ ≤ Φ′, if Ti ≤ T ′i for i = 1, 2, µ is a
subfunction of µ′, and ν is a subfunction of ν ′.

A translation Φ : T1 → T2 is an interpretation of T1 in T2, written
Φ : T1 ↪→ T2, if, for each theorem A of T1, Φ(A) is a theorem of T2. We shall
prove shortly the Interpretation Theorem for MS which gives a sufficient
condition for a translation to be an interpretation.

Fix a translation Φ = (µ, ν) : T1 → T2, and letM2 = ({D2
α : α ∈ B2}, I2)

be a model for T2. M1 = ({D1
α : α ∈ B1}, I1) is defined as follows. For

α ∈ B1, if µ(α) ∈ B2, then D1
α = D2

µ(α); otherwise

D1
α = {a ∈ D2

µ[α] : VM2(µ(α))(a) = t}.

Notice that D1
α ⊆ D2

µ[α] for all α ∈ B1. I1 is defined by:

(1) For an individual constant cα ∈ C1, I1(cα) = VM2(ν(cα)).

11



(2) For a function or predicate constant c[α1,...,αn,β] ∈ C1, the function
I1(c[α1,...,αn,β]) is the restriction of VM2(ν(c[α1,...,αn,β]) to D1

α1
× · · · ×

D1
αn .

The proofs of the next two lemmas are straightforward:

Lemma 4.1 Suppose each obligation of Φ is valid in M2. Then M1 is a
model for L1.

Lemma 4.2 Suppose each obligation of Φ is valid in M2. For all V1-
assignments ϕ into M1 and all expressions E ∈ E1,

VM1
ϕ (E) = VM2

Φ(ϕ)(Φ(E)),

where Φ(ϕ) is any V2-assignment into M2 such that, for all xα ∈ V1,
Φ(ϕ)(Φ(xα)) = ϕ(xα). Furthermore, for all formulas A ∈ E1, A is valid
in M1 iff Φ(A) is valid in M2.

Theorem 4.3 (Relative Satisfiability) Suppose Φ : T1 ↪→ T2. Then T1

is satisfiable if T2 is satisfiable.

Proof Let M2 be a model for T2 and M1 be defined as above. Since Φ
is an interpretation, Φ(A) is valid in M2 for each theorem A of T1. This
implies that each obligation of Φ is valid inM2. Hence, by Lemma 4.1,M1

is a model for L1. Let B ∈ Γ1. B is a theorem of T1, so Φ(B) is valid in
M2; hence, by Lemma 4.2, B is valid in M1. Therefore, each axiom of T1

is valid in M1, and so M1 is a model for T1. 2

Theorem 4.4 (Interpretation Theorem) Suppose Φ : T1 → T2. Then
Φ is an interpretation if each of its obligations is a theorem of T2.

Proof Suppose each obligation of Φ is a theorem of T2. Choose a theorem
A of T1. We may assume that there are models for T2, since otherwise Φ
would be trivially an interpretation. LetM2 be a model for T2, and letM1

be defined as above. Obviously, each obligation of Φ is valid in M2, and
so by the proof of Relative Satisfiability, M1 is a model for T1. Then A is
valid in M1, and by Lemma 4.2, Φ(A) is valid in M2. Therefore, we can
conclude that Φ(A) is a theorem of T2 and Φ is an interpretation. 2

Φ : T1 → T2 fixes a theory U = ((B,V, C),Γ) if U ≤ T1, U ≤ T2, µ is the
identity function on B, and ν is the identity function on C (but ν need not
be the identity function on V).
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Theorem 4.5 (Model Conservative Verification Theorem) Suppose
T1 ≤ T2. Then T1 � T2 if there is some Φ : T2 ↪→ T1 which fixes T1.

Proof Let Φ : T2 ↪→ T1 fix T1. We may assume that there are models for
T1 since otherwise T2 would be trivially a model conservative extension of
T1. LetM1 be a model for T1, and letM2 be the model for T2 constructed
from M1 as in the proof of Relative Satisfiability. By the definition of M2,
M2 is an expansion of M1 since Φ fixes T1. Therefore, T1 � T2. 2

Example 4.6 (Idempotent function constant (continued)) Let Φ =
(µ, ν) be the interpretation of I in S1 defined by:

(1) µ is the identity function on B.

(2) ν is the identity function on V.

(3) ν(f[α,α]) = λ{xα . xα}.

Clearly, Φ fixes S1, and hence S1 �I by the Model Conservative Verification
Theorem. 2

Example 4.7 (Cartesian product (continued)) There is no interpre-
tation of P in S2; so the Model Conservative Verification Theorem is not
applicable. Nevertheless, it is easy to see that P is indeed a model conser-
vative extension of S2. In second-order logic with λ-notation or in simple
type theory, one can construct an interpretation of P in S2 which fixes S2,
by interpreting the sort γ as a suitable function sort built from α1 and α2.
This illustrates an important benefit of working in an expressive logic: there
exist more interpretations. 2

Example 4.8 (Vector space (continued)) Let Φ = (µ, ν) be the inter-
pretation of V in F defined by:

(1) µ(f) = µ(v) = f .

(2) ν(xif ) = x2i
f .

(3) ν(yiv) = x2i+1
f .

(4) ν is the identity function on C.

(5) ν(0v) = 0f .

13



(6) ν(+[v,v,v]) = +[f ,f ,f ].

(7) ν(∗[f ,v,v]) = ∗[f ,f ,f ].

Φ is a formalization of the well-known fact that a field can be viewed as a
one-dimensional vector space. Clearly, Φ fixes F , and hence F � V by the
Model Conservative Verification Theorem. 2

5 Theory instantiation

Let Ti = (Li,Γi) for i = 1, 2 and T ′1 = (L′1,Γ′1). Suppose T1 ≤ T ′1 and
Φ = (µ, ν) : T1 ↪→ T2. An instance of T ′1 under the interpretation Φ is an
extension T ′2 of T2 constructed as follows.

Intuitively, T ′2 is simply the result of substituting T2 for T1 in T ′1. How
T2 is cemented to the part of T ′1 outside of T1 is determined by Φ. Also,
the members of (B′1 ∪ V ′1 ∪ C′1) \ (B1 ∪ V1 ∪ C1) are renamed to avoid name
conflicts.

Let B be a set of symbols such that |B| = |B′1 \ B1| and B ∩ B2 = ∅.
Define B′2 = B2 ∪ B. Then let µ′ : B′1 → B ∪ B2 ∪ U2 be any extension of µ
which is a bijection from B′1 \ B1 onto B.

Let V be a set of symbols such that |V| = |V ′1 \ V1| and V ∩V2 ∩ C2 = ∅.
Define V ′2 = V2 ∪ V. Let C be a set of symbols such that |C| = |C′1 \ C1| and
C∩C2∩V ′2 = ∅. Define C′2 = C2∪C. Then let ν ′ : V ′1∪C′1 → V∪C∪C2∪E2∪Λ2

be any extension of ν which is a bijection from V ′1\V1 onto V and a bijection
from C′1 \ C1 onto C.

Let a ∈ V ∪C and α be the sort of (ν ′)−1(a). If α ∈ B′1, tag a with µ′[α],
and if α = [α1, . . . , αn, β], tag a with [µ′[α1], . . . , µ′[αn], µ′[β]].

The following two lemmas are easily verified:

Lemma 5.1 L′2 = (B′2,V ′2, C′2) is a language of MS.

Lemma 5.2 Φ′ = (µ′, ν ′) : T ′1 → (L′2, ∅).

Let T ′2 = (L′2,Γ′2) where Γ′2 is the union of Γ2 and the set of obligations
of Φ′. Since (L′2, ∅) ≤ T ′2, Φ′ : T ′1 → T ′2. In fact, Φ′ : T ′1 ↪→ T ′2 because each
obligation of Φ′ is an axiom, and hence, a theorem of T ′2.

We have thus shown the following theorem:

Theorem 5.3 (Instantiation Theorem) Suppose T1 ≤ T ′1 and Φ :
T1 ↪→ T2. Then there is an extension T ′2 of T2 and an extension Φ′ = (µ′, ν ′) :
T ′1 ↪→ T ′2 of Φ such that µ′ and ν ′ are bijections outside of T1.
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Example 5.4 Suppose T1 and T2 are “minimal” theories (i.e., |B1| = |B2| =
2, C1 = C2 = ∅, and Γ1 = Γ2 = ∅) and Φ : T1 ↪→ T2. Then an instance of T ′1
under Φ is a copy of T ′1 whose base sorts and constants have been possibly
renamed. 2

Example 5.5 Suppose T ′1 = T2 and Φ is the identity interpretation on T1.
Then an instance of T ′1 under Φ would generally be a proper extension of
itself which contains copies of some of its machinery. A more reasonable
“instance” of T ′1 under Φ would be just T ′1 itself. This suggests that, in
practice, one would like to have a more sophisticated notion of the instance
of a theory under an interpretation where new machinery is created only if
it is not already present in the target theory of the interpretation. 2

Our notion of a theory instantiation is closely related to the notion of
theory instantiation proposed by Burstall and Goguen [2, 12, 13]; in both
approaches a theory is instantiated via an interpretation. However, in our
approach, any theory can be instantiated with respect to any of its sub-
theories. In the Burstall-Goguen approach, only “parameterized theories”
can be instantiated and only with respect to the explicit parameter of the
parameterized theory.

Theorem 5.6 (Model Conservative Instantiation Theorem)
Suppose T1 � T ′1 and T ′2 be an instance of T ′1 under Φ : T1 ↪→ T2. Then
T2 � T ′2.

Proof Let Φ′ = (µ′, ν ′) : T ′1 ↪→ T ′2 be an extension of Φ such that µ′ and ν ′

are bijections outside of T1. Also, let M2 = ({D2
α : α ∈ B2}, I2) be a model

for T2, and let M1 = ({D1
α : α ∈ B1, I1) be the model for T1 constructed

from M2 as in the proof of Relative Satisfiability. Since T1 � T ′1, there is a
model M′1 = ({D′1,α : α ∈ B′1}, I ′1) for T ′1 which is an expansion of M1.
M′2 = ({D′2,α : α ∈ B′2, I ′2) is defined as follows. For α ∈ B′2, if α ∈ B2,

then D′2,α = D2
α; otherwise D′2,α = D′1,(µ′)−1(α). Notice that D′1,α ⊆ D′2,µ′[α]

for all α ∈ B′1. I ′2 is defined by:

(1) For cα ∈ C2, I ′2(cα) = I2(cα).

(2) For an individual constant cα ∈ C′2 \ C2, I ′2(cα) = I ′1((ν ′)−1(cα)).

(3) For a function or predicate constant c[α1,...,αn,β] ∈ C′2 \ C2,
I ′2(c[α1,...,αn,β]) is any extension F : D′2,α1

× · · · × D′2,αn → D′2,β of
the function I ′1((ν ′)−1(c[α1,...,αn,β])).
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By a straightforward proof, M′2 is a model for T ′2 and an expansion of
M2. Therefore, T2 � T ′2. 2

Remark 5.7 The analogue of the Model Conservative Instantiation Theo-
rem for consequence conservativity is sometimes referred to as the “modular-
ization theorem” (e.g., see [19]). For a proof of this theorem for many-sorted
first-order logic, see [21].

Example 5.8 (Idempotent function constant (completed)) Let U
be a theory with β among its sorts. We can add an abstract idempotent
function constant to U by instantiating I under the trivial interpretation
that maps α to β. The resulting theory is a model conservative extension of
U by the Model Conservative Instantiation Theorem. Similar theories to I
can be used for adding other “underspecified” constants to a theory. 2

Example 5.9 (Cartesian product (completed)) Let U be a theory
with β1 and β2 among its sorts. We can add a cartesian product of β1

and β2 to U by instantiating P under the trivial interpretation that maps
αi to βi for i = 1, 2. The resulting theory is a model conservative extension
of U by the Model Conservative Instantiation Theorem. Similar theories to
P can be used for adding other abstract data types to a theory. 2

Example 5.10 (Vector space (completed)) Let U be a theory which
contains the structure of a field, i.e., there is some interpretation Φ of F
in U . Suppose we would like to extend U to a theory in which we can
reason about abstract vectors over this field. A suitable theory would be
an instance U ′ of V under Φ. By the Model Conservative Instantiation
Theorem, U ′ would be a model conservative extension of U . 2

6 The method

We present in this section our method for safely overwriting theories in
MMSs. Let S be some MMS whose underlying logic is MS. We will describe
the method in terms of S.

We begin by making a few definitions.
A theory module is a structure written as [T0, T ] where T0 � T . Theory

modules will be used to represent “working” theories and model conservative
extensions.

An interpretation module is a structure written as [Φ, [U0, U ], [V0, V ]]
where Φ : T1 ↪→ T2, [U0, U ] is a theory module such that U0 �T1 and T1 �U ,
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and [V0, V ] is a theory module such that T2 ≤ V . Interpretation modules
will be used to represent “working” interpretations.

A theory library is a set M of theory and interpretation modules such
that, for all [Φ, [U0, U ], [V0, V ]] ∈M, [U0, U ], [V0, V ] ∈M.

We will assume that S contains a theory library TL as well as the fol-
lowing procedures for modifying TL:

(1) Install-theory. Given T as input, this procedure adds a new theory
module [T, T ] to TL.

(2) Install-theory-extension. Given T and T ′ as input, this procedure adds
a new theory module [T, T ′] to TL, provided that S can verify that
T � T ′.

(3) Splice-theory-extensions. Given [T0, T1], [T1, T2] ∈ TL as input, this
procedure replaces every occurrence of [T0, T1] and [T1, T2] in TL with
[T0, T2]. (Note: By Transitivity, T0 � T2.)

(4) Install-interpretation. Given Φ : T1 → T2 and [U0, U ], [V0, V ] ∈
TL as input, this procedure adds a new interpretation module
[Φ, [U0, U ], [V0, V ]] to TL, provided S can verify that Φ : T1 ↪→ T2,
U0 � T1, T1 � U , and T2 ≤ V .

(5) Extend-theory. Given [Φ, [U0, U ], [V0, V ]] ∈ TL as input, this proce-
dure replaces [Φ, [U0, U ], [V0, V ]] and every occurrence of [V0, V ] in TL
with [Φ′, [U0, U ], [V0, V

′]] and [V0, V
′], respectively, where V ′ is an in-

stance of U via Φ such that V ≤ V ′ and where Φ′ is the corresponding
extension of Φ to U . (Note: By the Model Conservative Instantiation
Theorem, V � V ′, and hence, by Transitivity, V0 � V ′.)

It is easy to prove that, if TL is theory library, then the result of applying
any one of these five procedures to TL is also a theory library.

Remarks:

(1) Install-theory is a special case of Install-theory-extension.

(2) By the Model Conservative Verification Theorem, S can verify
that T � T ′ by verifying that there is an interpretation module
[Φ, [T ′, T ′], [T, T ]] ∈ TL such that Φ fixes T .

(3) If theory and interpretation modules are implemented in S so that
there is at most one module with the same components, then “replac-
ing each occurrence of a module X in TL with a module Y ” would
normally be implemented by overwriting X with Y .
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(4) Suppose [Φ, [U0, U ], [V0, V ]] in TL where Φ : U ↪→ V . If [U0, U ] is ex-
tended to [U0, U

′] as a result of applying Extend-theory to some other
interpretation module, then [Φ, [U0, U ], [V0, V ]] will become an inter-
pretation module of the form [Φ, [U0, U

′], [V0, V
′]]. Later, if desired,

Φ can be extended to an interpretation Φ′ : U ′ ↪→ V ′ by applying
Extend-theory to [Φ, [U0, U

′], [V0, V
′]].

We will now describe how this machinery for managing theories and
interpretations can be used as a basis for a general method for overwriting
theories with model conservative extensions.

Suppose that a user of S would like to install an mce-type τ where each
member of dom(τ) has the same “form”. The user would choose a fully
abstract member (T, T ′) of dom(τ) and then install the theory module [T, T ′]
in TL using Install-theory-extension. (If S could not verify that T �T ′, the
user might first use Install-interpretation to install an interpretation module
[Φ, [T ′, T ′], [T, T ]] in TL such that Φ fixes T .) dom(τ) would then consist of
all (U,U ′) such that U ′ is an instance of T ′ under an interpretation of T in
U .

Now suppose that someone wants to overwrite a theory module [U0, U ]
in TL with [U0, U

′] where U ′ is an instance of T ′ under an interpretation
Φ : T ↪→ U . First, [Φ, [T, T ′], [U0, U ]] would be installed in TL using Install-
interpretation. Then, [U0, U ] would be overwritten in TL with [U0, U

′] by
applying Extend-theory to [Φ, [T, T ′], [U0, U ]]. Interpretation modules af-
fected by the overwriting can be “updated” when necessary by using Extend-
theory.

Notice that, by this method, the task of overwriting a theory T with a
model conservative extension T ′ is factored into two steps. The first step
is to install an mce-type τ as described above such that (T, T ′) ∈ dom(τ).
The second step is to overwrite T with T ′: The user installs an appropriate
interpretation Φ with target theory T , then S automatically constructs T ′,
and finally S overwrites T with T ′. After the first step is performed, the
second step can be repeated again and again for different members of τ .

7 Conclusion

We have proposed a method for overwriting theories with model conserva-
tive extensions. Module conservative extensions are safe since they preserve
models and semantic consistency. The method can be used in a predicate
logic for which there is:
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(1) A notion of an interpretation of one theory in another.

(2) A notion of theory instantiation via theory interpretation.

(3) A “model conservative verification theorem” that says T ′ is a model
conservative extension of T if there is an interpretation of T ′ in T
which fixes T .

(4) A “model conservative instantiation theorem” that says model conser-
vativity is preserved by theory instantiation.

The main idea of the method is to represent a model conservative exten-
sion type by an abstract theory extension. The abstract extension is shown
to be model conservative by the model conservative verification theorem, and
instances of the extension type are constructed from the abstract extension
by means of theory instantiation. Each instance of the extension type is
automatically model conservative by the model conservative instantiation
theorem.

We have illustrated the method with a version of many-sorted first-order
logic called MS. It is more effective with highly expressive predicate logics,
such as simple type theory, which have many more interpretations than a
first-order logic. The method is primarily intended for use in mechanized
mathematics systems—especially systems which support the “little theories”
version, as opposed to the “big theory” version, of the axiomatic method.6

Acknowledgments
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sion, reasoning is distributed across a network of theories linked by interpretations which
serve as conduits to pass results from one theory to another. We argue in [10] that this
way of organizing mathematics is very advantageous for managing complex mathematics
within mechanized mathematics systems.
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