An Approach to Process Algebra using IMPS

F. Javier Thayer *

April 11, 1995

Abstract

In this paper we develop a formal mathematical model for processes,
along the lines of Communicating Sequential Processes (CSP). Our
development is completely general and is capable of dealing with time.
Rather than building semantic models on a traditional trace-based
failures model, we replace the set of traces by the set of elements of a
monoid. In the case of untimed CSP, this monoid is taken to be the
set of all event sequences under concatenation; mathematically this is
the free monoid generated by the event alphabet. For timed CSP, one
natural monoid that may be considered is the free monoid generated
by the set of atomic events together with the wait operators W (¢) for
t a real number with the relations W (t + s) = W (t)W (s).

*Supported by the United States Army cEcom under contract DAAB07-94-C-H601,
through MITRE’s Technology Program. Author’s address: The MITRE Corporation, 202
Burlington Rd, Bedford MA 01730-1420 USA; Telephone: 617-271-2749; Fax: 617-271-
3816; E-mail: jt@mitre.org

Contents
1 Introduction
2 Preliminaries

3 Monoid Transition Systems

3.1 Testing Preorders
3.2 Testing Equivalence,
3.3 Failures as Independent Objects
34 Graded Monoids oo

Iy

The Metric Space of Failures
Tree-like Metric Spaces

Function Spaces

Q &8 »

The p operator

ii

16

21

26

29

1 Introduction

In this paper we develop a new approach to process algebra and CSP. One
goal of the paper is to provide a foundation for subsequent work in process
specification, and to this end, the development has been done entirely using
the IMPS system. For an overview of the IMPS system, see [6, 7]. Moreover,
we have departed from the usual formulations in which external behaviors
are modeled as sequences of events called traces. In the following presenta-
tion, we have adopted a mathematically more satisfying and more general
approach which replaces the set of traces by the set of elements of a monoid.
We have two main examples in mind:

1. In the case of untimed CSP, this monoid is taken to be the set of all
event sequences under concatenation; mathematically, this is the free
monoid generated by the event alphabet.

2. For timed CSP, one natural monoid that may be considered is the
free monoid generated by the set of atomic events together with the
wait operators W (¢) for ¢ a real number with the relations W (¢t +s) =
W (t)W (s).

In this approach to process semantics, in general there may be no “atomic”
events, that is, events which are not themselves non-trivial products. Indeed,
actions have to be defined as certain classes of monoid elements under an

equivalence relation =, where a = b for monoid elements a,b means that
either

e Both a and b are the identity of the monoid, or

e a,b have a nontrivial common prefix

The set of actions consist of “germs” of monoid elements. If we think of
monoid elements as being the external interactions of a process, the germ of
an element is a mathematical representation of the process’s initial behavior.
For example, in the case of untimed CSP, the germ is the first action of the
process.

In order to relate this approach to the myriad of existing approaches
to process theory, we have developed a theory of mathematical structure
which captures some of the formalism of process transition. We refer to this
structure as a Monoid Transition System (MTS). This extends the concept of

a Labelled Transition System developed by Hennessey, Olderog and others.
Following Matthew Hennessy’s approach we define various kinds of possible
testing semantics and explore the relations between the various notions.
One version of the testing semantics associates to each element of an MTS
a function on the set of monoid elements. This function is the set of failures
of the process.

We then consider the set of failures, show that in a natural way it is an
ultrametric space, and prove its completeness. The relevance of this result
is that it mathematically justifies recursion as a means of process definition.
Indeed, if f is a contractive functional on the space of failures, then there is
a unique p such that p = f(p).

All of the mathematics that is used implicitly or explicitly in this pa-
per has been developed using IMPS, and, in particular, all the proofs have
been machine-checked. The proofs themselves are represented as runnable
scripts, but for lack of space in the paper they are not included here, but are
publically available along with the tMPs distribution. Some of the prelimi-
nary mathematical development is also omitted in this presentation. This
includes the theory of metric-space topology up to the Contractive Fixed
Point Theorem. For a discussion of this see [5].

This paper does assume a basic knowledge of the IMPS system as de-
scribed in the manual [7]. In particular, the reader should be forwarned
that terms may be undefined and functions may be partial, that is defined
on only part of their syntactic domain.

2 Preliminaries

We begin with the definition of the theory of a single monoid. A monoid is a
set with a single binary, associative operation, and an identity. Notice that
in our formalization of a monoid as an IMPS theory, we are also throwing in
the real numbers. This gives us the integers for free and allows us to define
additional concepts which require the integers, such as sequential products.

Language 2.1 (monoid-language)
Embedded language: h-o-real-arithmetic
Base type: U

Constants: e : U

xx : [Ux U —= U]

Component theory: h-o-real-arithmetic

Top level axioms:

associative-law-for-multiplication-for-monoids
Vz,y,£: U z-y-z=x-y-2.

right-multiplicative-identity-for-monoids Vx : U z-e=uz.

left-multiplicative-identity-for-monoids Vz : U e-z = z.

anonymous total(x*, [U x U — U]).

Figure 1: Components and axioms for monoid-theory

Theory 2.2 (monoid-theory)
Language: monoid-language
Component Theories and Axioms: See Figure 1.

Definition 2.3 (prefix)
Theory: monoid-theory
[m,n:U —3Ip:U n=m-p]

Notice that if the monoid is a group, the prefix relation is completely
trivial, that is, every element is a prefix of every other element. This is in
sharp contrast to the monoid of finite sequences over an alphabet in which
the prefix relation is antisymmetric.

Theorem 2.4 (prefix-is-transitive)

Theory: monoid-theory

Vz,y,z: U s. t. prefix(z,y) A prefix(y, z),
prefix(z, z).

Theorem 2.5 (prefix-is-reflexive)
Theory: monoid-theory
Vz : U prefix(z, z).

In the case of the monoid of traces, the prefix relation which we abstractly
defined corresponds exactly to the usual prefix relation for sequences. Now
we define an equivalence relation between monoid elements. Monoid ele-
ments z, y satisfy this relation if either both are equal to the identity element
or they have a common initial segment.

Component theory: monoid-theory
Top level axioms:
directed-property Vz,y,z: U implication
e conjunction
o =(z=¢e)
o ~(z=¢€)
o prefix(z,y)
o prefix(z,y)
e Ju : U conjunction
o =(u=e)
o prefix(u, z)
o prefix(u, z).

no-units Vz : U s. t. prefix(z,e),

I — €.

Figure 2: Components and axioms for directed-monoid-theory

Definition 2.6 (init_eqv)
Theory: monoid-theory
[a,b:U —
disjunction
ea=eANb=ce

e (a=e)An(b=e)A(z: U —(z = e)Aprefix(z, a) Aprefix(z, b)) .

Theory 2.7 (directed-monoid-theory)
Language: the-null-language
Component Theories and Axioms: See Figure 2.

Theorem 2.8 (init_eqv-reflexive-property)
Theory: monoid-theory
Vz: U initeqv(z,z).

Theorem 2.9 (init_eqv-symmetric-property)
Theory: monoid-theory
Vz,y: U <—

e init_eqv(z,y)

e init_eqv(y, z).

Theorem 2.10 (init_eqv-transitive-property)

Theory: directed-monoid-theory

Vz,y,z: U s t. init_eqv(z,y) A init_eqv(y, z),
init_eqv(z, z).

Translation 2.11 (generic-theory-to-directed-monoid)
Source Theory: generic-theory-1

Target Theory: directed-monoid-theory

Sort Pairs: ind; — U

This translation is a theory interpretation.

We now define a mapping denoted “germ,” which maps the sort U into
equivalence classes of elements of U. Thus for m € U, germ(u) is a set of
monoid elements. The sort action is then defined to be the range of the
germ function. In order for these definitions to make sense, a few preliminary
lemmas are needed.

In the following theorem we use the notation ¢ | to mean that the term
t is defined.

Theorem 2.12 (Anonymous)
Theory: directed-monoid-theory
quotient(init_eqv) |, .

Definition 2.13 (germ)
Theory: directed-monoid-theory
quotient (init_eqv).

Theorem 2.14 (totality-of-germ)
Theory: directed-monoid-theory
total(germ, [U — sets[U]]).

Theorem 2.15 (germ-equality-condition)
Theory: directed-monoid-theory
Ym,n: U <<
e germ(m) = germ(n)
e disjunction
om=eAn=e
o Ju:U -(u=e) A prefix(u,m) A prefix(u,n).

Theorem 2.16 (Anonymous)
Theory: directed-monoid-theory
nonempty {ran{germ}}.

Having established that the germ function has a non empty range, we
can now legitimately define the sort action. In IMPS sorts are defined by the
predicate which recognizes which elements are elements of that sort. In this
case the predicate is membership in the range of the germ function. Note
that in the conventional trace framework, atomic actions are also traces
whereas, in our approach, there is generally no natural inclusion mapping
from actions into traces.

Sort Definition 2.17 (action)
Theory: directed-monoid-theory
[s:sets[U] — s € ran{germ}].

3 Monoid Transition Systems

In this section, we construct a model of a set of processes. In traditional
formulations of process theory, there is given a basic set of atomic actions
(see [10]) which are the building blocks of processes. This set of actions
is usually called the alphabet of the process. Let us call this set action.
Moreover, processes p, g can be related to each other via an observable event
a drawn from the set action. We write this ternary relation as follows
p = ¢. This is thought of as the process p becoming the process ¢ via an
observable event a. This kind of structure is referred to as a labelled transition
system [8, 9]. It is straighforward (see [8]) to define a derived relation — for
triples (p, 4, q) where p,q are processes and y is a sequence of actions.

In the model we construct in this paper, processes are related to each
other by event traces; the event traces themselves are modeled by a monoid.
This extends the concept of a labelled transition system if we regard the set
of event sequences as being a monoid under concatenation.

For other different approaches to process algebra, see [3, 4, 11].

Language 3.1 (language-for-monoid-transition-system)
Embedded language: monoid-theory

Base type: state

Constant: act : [state X U x state — %]

Component theory: directed-monoid-theory
Top level axioms:
monoid-operation-behaves-as-composition Vs, : U,p,r
state <~
) Lig
e Jg: state conjunction
opq
°ogq Lo

monoid-identity-behaves-as-identity Vp : state p - p.

Figure 3: Components and axioms for monoid-transition-system

Theory 3.2 (monoid-transition-system)
Language: language-for-monoid-transition-system
Component Theories and Axioms: See Figure 3.

We now define acceptance and refusal sets for both transitions and ac-
tions.

Definition 3.3 (accepted_transitions)
Theory: monoid-transition-system
[p:state — {m:U|3Jq:state p = q}].

Definition 3.4 (refused_transitions)
Theory: monoid-transition-system
[p:state = {m: U|Vq:state —(p = q)}]

Theorem 3.5 (accepted_transitions-is-prefix-closed)
Theory: monoid-transition-system
Vp : state,m,n : U implication
e conjunction
o m € accepted_transitions(p)
o prefix(n,m)
e n € accepted_transitions(p).

Definition 3.6 (accepted_actions)
Theory: monoid-transition-system

[p : state —
{a :action|3Im : U conjunction
e germ(m) = a
e m € accepted_transitions(p)}].

Definition 3.7 (refused_actions)
Theory: monoid-transition-system
[p : state
{a :action|Vm :U s. t. germ(m) = a,
—(m € accepted_transitions(p))}].

Theorem 3.8 (refused_actions-is-total)
Theory: monoid-transition-system
total(refused_actions, [state — sets[action]]).

Lemma 3.9 (accepted_actions-is-complement-of-refused_actions)
Theory: monoid-transition-system
Vp : state, z : action accepted_actions(p) = refused_actions(p).

3.1 Testing Preorders

In this section we define two partial orderings on the set of all processes.
We do this only to relate our approach to the existing theories of acceptance
and failure semantics, even though we will not use these concepts explicitly.
Indeed, of more interest to us is the concept of testing equivalence which we
discuss in the next subsection.

Definition 3.10 (may _refuse_after)
Theory: monoid-transition-system
[z : sets[action],u : U, p : state —
dq : state conjunction
*pyg
e ¢ C refused_actions(q) |

Definition 3.11 (<_may _refuse)
Theory: monoid-transition-system
[p,q : state —
Vz : sets[action],u : U s. t. may_refuse after(z,u,p),
may refuse_after(z,u,q)].

The following is one of the key concepts in the testing semantics we are
investigating. The significance of this concept will be elucidated below in a
series of theorems.

Definition 3.12 (failures)
Theory: monoid-transition-system
[p : state —
[u:U —
{s : sets[action] | 3¢ : state p = g A s C refused_actions(q)}]].

Theorem 3.13 (failures-characterization-of-<_may refuse)
Theory: monoid-transition-system
Vp,q : state <=

® <inay_refuse (p, Q)
o Vu : U failures(p)(u) C failures(q)(u).

Definition 3.14 (must_refuse_after)
Theory: monoid-transition-system
[z : sets[action],u : U, p : state
Vq:state s t. p-—gq,
z C refused_actions(q) |.

Lemma 3.15 (must_refuse_after-characterization-lemma)
Theory: monoid-transition-system
Vz : sets[action],u : U,p : state <=
e must_refuse_after(z, u, p)
o z CN{[q:state —
if p = q then refused_actions(q) else sort_indicator(action)]}.

Definition 3.16 (successors_after)
Theory: monoid-transition-system
[p : state —
[u:U —
{a : action|3q : state p = ¢ A a € accepted_actions(q)}]].

Theorem 3.17 (successors_after-complement)
Theory: monoid-transition-system
Vp :state,u: U ({[q : state —
conditionally, if p — g
e then refused_actions(q)
e else sort_indicator(action) |} = successors_after(p)(u).

Theorem 3.18 (must_refuse_after-characterization)
Theory: monoid-transition-system
Vz : sets[action],u : U,p : state <=

e must_refuse_after(z, u, p)

e 1 C (successors_after(p)(u).

Definition 3.19 (<_must_refuse)
Theory: monoid-transition-system
[p,q : state —
Vz : sets[action],u : U s. t. must_refuse_after(z,u,p),
must_refuse_after(z, u, q) |

Theorem 3.20 (characterization-of-<_must_refuse)
Theory: monoid-transition-system
Vp,q : state <=

® <nust_refuse (¢>P)
o Vu: U successors_after(p)(u) C successors_after(q)(u).

Definition 3.21 (must_accept_after)
Theory: monoid-transition-system
[z : sets[action],u : U, p : state
Vg :state s t. p-—gq,
—(z 6 accepted_actions(q)) |.

Definition 3.22 (may_accept_after)
Theory: monoid-transition-system
[z : sets[action],u : U, p : state
Jq : state conjunction
°*p =g
e —(z 6accepted_actions(q)) |.

Theorem 3.23 (must_accept_after-negation-of-may refuse_after)
Theory: monoid-transition-system
Vp : state, z : sets[action],u : U <«

e must_accept_after(z, u,p)

e —(may refuse_after(x,u, p)).

Theorem 3.24 (testing-characterization-of-<_may refuse)
Theory: monoid-transition-system

10

Vp,q : state <=
® <may _refuse (p, Q)
e Vz : sets[action],u : U s. t. must_accept_after(z,u,q),
must_accept_after(z,u, p).

Theorem 3.25 (may_accept_after-negation-of-must_refuse_after)
Theory: monoid-transition-system
Vp : state, z : sets[action],u : U <«

e may accept_after(z, u, p)

e —(must_refuse_after(z, u, p)).

Theorem 3.26 (testing-characterization-of-<_must_refuse)
Theory: monoid-transition-system
Vp,q : state <=

® <inust_refuse (p7 Q)

e Vz : sets[action],u : U s. {. may_accept_after(z,u,q),

may _accept_after(z, u, p).

Theorem 3.27 (accepted_transitions-characterization-of-<_must_refuse)

Theory: monoid-transition-system
Vp,q : state <

® <must_refuse (Qap)
e accepted_transitions(p) C accepted-transitions(q).

3.2 Testing Equivalence

To complete this circle of ideas, we introduce a relation on the sort state
and prove that the mapping p — failures(p) separates precisely those pairs
of points which are inequivalent.

Definition 3.28 (=_may _refuse)
Theory: monoid-transition-system
[p,q : state —
Vz : sets[action],u : U <=
e may refuse_after(z, u, p)
e may refuse_after(z,u, q) .

Theorem 3.29 (failures-characterization-of-=_may refuse)
Theory: graded-monoid-transition-system

11

Vp,q : state <=

® —may_refuse (p, Q)
o failures(p) = failures(q).

3.3 Failures as Independent Objects

We would like to characterize the image of the mapping which associates
to a process its possible failures. Unfortunately, this does not appear to
be possible. However, we may restrict the possibilities to some extent. We
begin with a useful definition.

Definition 3.30 (support)
Theory: directed-monoid-theory
[f: U — sets[sets[action]] + {u : U| nonempty {f(u)}}]-

The formal definition of failure which follows comprises six conditions
which are suggested by the definition of the classic paper [1]. We will say u
is a trace of the process f, if u € supportf. A process f may refuse a set of
actions y after a trace u, if y € f(u).

Informally, a function

f : U — sets[sets[action]]
is a failure if

1. Whenever a process can refuse a set of actions y after a trace u, then
it can refuse any subset of y.

2. e is always a trace.
3. Any prefix of a trace is a trace.
4. If u is a trace and a an action, then either

e The trace u has an extension whose germ is a

e a can always be added to any refusal set after u.
5. The function is defined for all transitions.
6. The germ of e is never refused.

Here then is the formal 1IMPS definition of failures:

12

Definition 3.31 (failure_q)
Theory: directed-monoid-theory
[f: U — sets[sets[action]]
conjunction
e Vu: U, z,y :sets[action] (y € f(u) Az Cy) Dz € f(u)
e e € support(f)
e Vu,v: U (u € support(f) A prefix(v,u)) D v € support(f)
e Vu:U,a: action wu € support(f) D (Im:U germ(m) =a A
u - m € support(f) V Vz : sets[action] z € f(u) D zU{a} € f(u))
e total(f, [U — sets[sets[action]]])
e Vu: U, s :sets[action] s € f(u) D —(germ(e) € s)].

Lemma 3.32 (e-is-never-refused)
Theory: monoid-transition-system
Vp : state —(germ(e) € refused_actions(p)).

The following theorem is not a characterization of the failures of a set of
processes. However, it does say that our abstract definition of failures does
include all those that arise as failures of a monoid transition system.

Theorem 3.33 (range-of-failures)
Theory: monoid-transition-system
Vp : state failure,(failures(p)).

Lemma 3.34 (not-everything-is-a-failure)
Theory: directed-monoid-theory
—(failurey([z : U +— 0])).

Definition 3.35 (stop-_ff)
Theory: directed-monoid-theory
[z:U —
conditionally, if xt = e
e then {s: sets[action] | =(germ(e) € s)}
o else (].

Theorem 3.36 (stop-is-a-failure)

Theory: directed-monoid-theory
failure, (stopy).

13

Component theory: directed-monoid-theory
Top level axioms:
divisibility Va: U s. t. —(a=e¢),

3b: U conjunction

e (b=e¢)

e prefix(b, a)

e 0 < Ingth(b

e Ingth(b) < 1.

length-non-negative Va : U 0 < Ingth(a).

length-of-product Va,b: U Ingth(a-b) = Ingth(a) + Ingth(b).

Figure 4: Components and axioms for graded-monoid

It is convenient to have an atomic sort denoting the set of failures. This
is possible by the preceding theorem which states that the set of failures is
nonempty. We will denote this sort by F.

Sort Definition 3.37 (F)
Theory: directed-monoid-theory
failure,.

3.4 Graded Monoids

A graded monoid is a directed monoid with a length function “lngth.” The
“e” is deliberately omitted to distinguish the operator from the length func-
tion for arbitrary finite sequences. There is an IMPS-specific technical point
we are slurring over here, since “length” is really a quasi-constructor, a kind
of abbreviation.

Language 3.38 (language-for-graded-monoid)

Embedded language: directed-monoid-theory
Constant: Ingth : [U — R]

14

Component theories: graded-monoid monoid-transition-system
Top level axioms: There are none.

Figure 5: Components and axioms for graded-monoid-transition-system

Theory 3.39 (graded-monoid)
Language: language-for-graded-monoid
Component Theories and Axioms: See Figure 4.

Theorem 3.40 (Anonymous-10)
Theory: graded-monoid
total(Ilngth, [U — R)).

Theorem 3.41 (Ingth-of-e)
Theory: graded-monoid
Ingth(e) = 0.

Theorem 3.42 (action-representatives-can-have-norm-le-1)
Theory: graded-monoid
Va : action Fu:U conjunction

o germ(u) = a

e 0 < Ingth(u)

e Ingth(u) < 1.

Theory 3.43 (graded-monoid-transition-system)
Language: the-null-language
Component Theories and Axioms: See Figure 5.

Definition 3.44 (eqv_may refuse)
Theory: graded-monoid-transition-system
[p,q :state,n: Z —
Vz : sets[action],u : U s. t. Ingth(u) < n,
<
e may refuse_after(z, u, p)
e may refuse_after(z, u, q) .

15

Theorem 3.45 (failures-characterization-of-eqv_may refuse)
Theory: graded-monoid-transition-system
Vp,q:state,n:Z <

e eqv_may _refuse(p, g, n)

e Vu:U s ¢ Ingth(u) <mn,

failures(p) (u) = failures(q)(u).

4 The Metric Space of Failures

In the previous section, we have associated to each element p of a monoid
transition system the function u — failures(q)(u) defined on the transition
set, that is, the carrier set of the monoid. Moreover, this function is faithful,
in that distinguishes any two processes that are observably distinct. In this
section, we study more closely the space of failures and show that it has
the structure of a complete metric space. In order to do this, we need some
results about a class of metric-spaces we refer to as tree-like spaces. We
postpone discussion of these spaces to the appendices.

There are various other approaches to constructing metric-space models
for processes. One approach constructs these models as a fixed point (in a
categorical sense) of a certain functor in the category of metric spaces see [2].

We begin with a completely straightfoward technical lemma which states
the obvious fact that the composed function floor o Ingth maps U into N.

Theorem 4.1 (Anonymous-11)
Theory: graded-monoid
floor o Ingth | [U — N].

We now apply the general theory of functions on a graded set. This
theory is developed in the appendices. In the application, the underlying
set is just the carrier set of the monoid, and the grading function is the floor
of the length.

Translation 4.2 (functions-on-a-graded-set-to-graded-monoid)
Source Theory: functions-on-a-graded-set

Target Theory: graded-monoid

Sort Pairs: values — sets[sets[action]]

Constant Pairs: degree — floor o Ingth

This translation is a theory interpretation.

16

Theorem 4.3 (Anonymous-12)
Theory: graded-monoid
Jdz : U — sets[sets[action]] total(z, [U — sets[sets[action]]]).

(def-theorem graded-monoid-fn¥dist-triangle-inequality
fnjdist-triangle-inequality
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fn)dist-symmetric
fnjdist-symmetric
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fnjdist-non-negative
fnjdist-non-negative
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fn)dist-reflexive
fn)dist-reflexive
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theory-ensemble-instances metric-spaces
force-under-quick-load
(target-theories graded-monoid graded-monoid)
(permutations (0) (0 1))
(theory-interpretation-check using-simplification)
(sorts (pp totallfns totalfns))
(constants (dist fnjdist fnjdist)))

Theorem 4.4 (all-failures-are-total)

Theory: graded-monoid
Vr:F x| total _fns.

17

Next we view the set of failures as a subset of the metric space of total
functions on U. In 1MPS terminology, we build an interpretation from the

little theory of a subspace of a metric space into the theory of a graded
monoid as follows:

Translation 4.5 (ms-subspace-to-graded-monoid)
Source Theory: ms-subspace

Target Theory: graded-monoid

Sort Pairs: P +— total fns aa — F

Constant Pairs: dist — fn_dist

This translation is a theory interpretation.

(def-theory-ensemble-instances
metric-spaces
force-under-quick-load
(target-theories graded-monoid graded-monoid)
(multiples 1 2)
(theory-interpretation-check using-simplification)
(sorts (pp ff ff))
(constants (dist "lambda(x,y:ff, fnidist(x,y))"
"lambda(x,y:ff, fn%dist(x,y))"))
(special-renamings
(complete subjcomplete)
(cauchy subjcauchy)
(1im sub%1im)))

(def-theorem graded-monoid-fnj%approx-separation
fnjapprox-separation
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fnjapprox-monotonicity
fnj,approx-monotonicity
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fnj%approx-existence
fnl,approx-existence

18

(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fnjapprox-reflexivity
fnjapprox-reflexivity
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fn}approx-symmetry
fnj,approx-symmetry
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

(def-theorem graded-monoid-fnjapprox-transitivity
fnjapprox-transitivity
(theory graded-monoid)
(translation functions-on-a-graded-set-to-graded-monoid)
(proof existing-theorem))

Translation 4.6 (degree-equivalence-to-graded-monoid)
Source Theory: degree-equivalence

Target Theory: graded-monoid

Sort Pairs: P — total_fns

Constant Pairs: approx — fn_approx

This translation is a theory interpretation.

Theorem 4.7 (characterization-ultrametric-limit-of-fns)
Theory: graded-monoid
Vf:Z — total_fns, s : total_ fns <=
elimf=s
eVm:Z s.t. 0<m,
In:Z Vp:Z,u:U st n<pAlngth(u) <m+1,
f(p)(u) = s(u).
Lemma 4.8 (prefix-has-smaller-length-lemma)
Theory: graded-monoid
Va,b:U s. t. prefix(a,b),
Ingth(a) < Ingth(b).

19

Theorem 4.9 (failure_qg-is-closed-under-lim)
Theory: graded-monoid
Vs :Z — total_fns implication
e conjunction
olims|
oVn:Z s(n)lD failure,(s(n))
o failure,(lims).

The following is the basic result which allows recursive definitions of pro-
cesses. Recall that a metric space is complete if and only every Cauchy se-
quence in it converges. In the following theorem, the constant sub_complete
is an element of sort prop. Its meaning is that the set of elements in F, in
the metric induced from the space of all functions

U — sets[sets[action]]

is complete. Notice that in informal parlance one would have just said F is
complete, but such distinctions are one of the burdens of formal mathemat-
ics.

Theorem 4.10 (completeness-of-ff)
Theory: graded-monoid
sub_complete.

20

Component theory: h-o-real-arithmetic

Top level axioms:

approx-separation Vz,y:P s. t. —(z =y),
dn:Z —(approx(z,y,n)).

approx-monotonicity Vm,n : Z,z,y : P s. t. approx(z,y,n) A
m < n,
approx(z,y,m).

approx-existence Vz,y: P Im:Z approx(z,y,m).
approx-reflexivity Vm : Z,z : P approx(z, z,m).

approx-symmetry Vm :Z,z,y: P s. t. approx(z,y,m),
approx(y, z,m).

approx-transitivity Vm : Z,z,y,z : P s. t. approx(z,y,m) A

approx(y, z, m),
approx(z, z,m).

Figure 6: Components and axioms for degree-equivalence

A Tree-like Metric Spaces

In this section we discuss sets P which are tree-like in the following sense:
for each integer n, there is a relation of equality of degree n on the set P. Of
course, we assume this relation satisfies some natural equivalence properties.
The set of paths through a labelled tree form a natural example of such a
structure. In this case, we say paths p, p’ are equal of order n if they coincide
up to the step n.

In this section we assume basic facts about metric spaces.

Language A.1 (degree-equivalence-language)
Embedded language: h-o-real-arithmetic

Base type: P

Constant: approx : [P x P x Z — %]

Theory A.2 (degree-equivalence)

21

Language: degree-equivalence-language
Component Theories and Axioms: See Figure 6.

Definition A.3 (sep%deg)
Theory: degree-equivalence
[z,y:P —
tn:Z conjunction
¢ —(approx(z,y,n))
eVm:Z m <n D approx(z,y,m)].

Theorem A.4 (iota-free-characterization-of-sep%deg)
Theory: degree-equivalence
Ve, y:P,n:Z <=
e sep_deg(z,y) =n
e conjunction
o =(approx(z, y,n))
oVm:Z m <n D approx(z,y,m).

Theorem A.5 (alternate-iota-free-characterization-of-sep%deg)
Theory: degree-equivalence
Ve,y: P,n:2Z <
e sep_deg(z,y) =n
e conjunction
o —(approx(z, y,n))
o approx(z,y,n — 1).

Theorem A.6 (definedness-of-sep%deg)
Theory: degree-equivalence
Ve,y: P s t. —=(x=y),

sep.deg(z,y) |

Theorem A.7 (undefinedness-case-of-sep%deg)
Theory: degree-equivalence
Vz:P —(sep-deg(z,z) }).

Theorem A.8 (sep%deg-upper-bound)
Theory: degree-equivalence
Ve,y:P,n:Z s .t —(z=y),

<~

e sep_deg(z,y) <mn

e —(approx(z,y,n)).

22

Lemma A.9 (symmetry-of-sep%deg)
Theory: degree-equivalence
Ve,y: P s t. —(x=y),

sep_deg(z,y) = sep_deg(y,).

Lemma A.10 (reverse-ultrametric-lemma)
Theory: degree-equivalence
Vz,y,z: P implication

e conjunction

o ~(z=1y)
o (y = 2)
o =(z = 2z)

o sep-deg(w,y) < sep_deg(y, 2)
e sep_deg(z,y) < sep-deg(z, 2).

Lemma A.11 (reverse-ultrametric-inequality)

Theory: degree-equivalence

Ve,y,z: P s t. —~(z=y)A-(y=2)A-(z=2z),
min(sep_deg(z,y),sep-deg(y, z)) < sep_deg(z, z).

Definition A.12 (sep%dist)
Theory: degree-equivalence
[z,y:P —
conditionally, if xt =y
e then 0
o else 27sep-deg(zy) |

Theorem A.13 (sep%dist-reflexive)
Theory: degree-equivalence
Ve,y: P <

e sep_dist(z,y) =0

oz =y.

Theorem A.14 (sep%dist-non-negative)
Theory: degree-equivalence
Vz,y: P 0 < sep.dist(z,y).

Theorem A.15 (sep%dist-symmetric)
Theory: degree-equivalence
Vz,y: P sep_dist(z,y) = sep_dist(y, z).

23

Theorem A.16 (min-under-nondecreasing-fn-lemma)
Theory: h-o-real-arithmetic
Ve,y:2Z,f:Z — R implication

eVr,y:Z st z<uy,

fly) < f(z)

o f(min(z,y)) = max(f(z), f(y))-

Theorem A.17 (sep%dist-ultrametric)
Theory: degree-equivalence
Vz,y,z: P sep-dist(zr,z) < max(sep_dist(z,y),sep-dist(y, z)).

Translation A.18 (ultrametric-to-degree-equivalence)
Source Theory: ultrametric-spaces

Target Theory: degree-equivalence

Constant Pairs: dist — sep_dist

This translation is a theory interpretation.

(def-theorem sepjdist-is—a-metric
ultrametic-spaces—-are-metric
(theory degree-equivalence)
(translation ultrametric-to-degree-equivalence)
(proof existing-theorem))

(def-theory-ensemble-instances metric-spaces
force-under-quick-load
(target-theories degree-equivalence degree-equivalence)
(permutations (0) (0 1))
(theory-interpretation-check using-simplification)

(sorts (pp pp pp))
(constants (dist seplkdist sepldist)))

Lemma A.19 (small-distance-characterization-lemma)
Theory: degree-equivalence
Vr,y:P,n:Z <=
e sep_dist(z,y) <277
e disjunction
o xr= y
o n < sep_deg(z,y).

24

Theorem A.20 (small-distance-characterization)
Theory: degree-equivalence
Ve,y: P,n:2Z <

e sep_dist(z,y) <277

e approx(z,y,n — 1).

Lemma A.21 (powers-arbitrarily-small)
Theory: h-o-real-arithmetic
Vre:R s.t. 0<rAr<1A0<e,
dn:Z conjunction
e 1<n
o r" <e.

Theorem A.22 (cauchy-characterization-for-sep%dist)
Theory: degree-equivalence
Vi:Z-~-P <

e cauchy(f)

eVm:Z dn:Z Vp:Z st n<p,

approx(f(p), f(p + 1), m).

Theorem A.23 (strong-cauchy-characterization-for-sep%dist)
Theory: degree-equivalence
Vf:Z—~P <—

e cauchy(f)

eVm:Z dn:Z Vp,q:Z st n<pAn<g,

approx(f(p), f(g), m).

Theorem A.24 (lim-characterization-for-sep%dist)
Theory: degree-equivalence
Vf:Z—~P,s:P <+—

elimf=s

eVm:Z dn:Z Vp:Z st n<p,

approx(f (p), s, m).

The next theorem gives a characterization of contractive mappings. It
states that a mapping f is contractive if it always increases the degree of
approximation between pairs of elements.

Theorem A.25 (contraction-characterization-for-sep%dist)
Theory: degree-equivalence

25

Component theory: h-o-real-arithmetic
Top level axioms:
totality-of-degree total(degree, [U — NJ).

Figure 7: Components and axioms for functions-on-a-graded-set

Vf:P — P implication
oeVr,y:P,m:Z s t approx(z,y,m),

approx(f(z), f(y),m + 1)
e contraction(f).

B Function Spaces

In this section we apply the preceeding theory to put a metric on certain
function spaces. Basically, under this metric, functions are close if they are
equal for large elements.

Language B.1 (functions-on-a-graded-set)
Embedded language: h-o-real-arithmetic

Base types: U values

Constant: degree : [U — N]

Theory B.2 (functions-on-a-graded-set)
Language: functions-on-a-graded-set
Component Theories and Axioms: See Figure 7.

Theorem B.3 (Anonymous) Theory: functions-on-a-graded-set
Jdz : U — values total(z, [U — values]).

Sort Definition B.4 (total%fns)
Theory: functions-on-a-graded-set
[f:U — values —

total(f,[U — values])].

26

Definition B.5 (fn%approx)
Theory: functions-on-a-graded-set
[f,g:totalfns,n: Z —

Vk:U s t. degree(k) <mn,

f(k) =g(k)].

Lemma B.6 (fn%approx-separation)
Theory: functions-on-a-graded-set
Vz,y : total fns s. &. —(z =1y),

In:Z —(fn_approx(z,y,n)).

Lemma B.7 (fn%approx-monotonicity)
Theory: functions-on-a-graded-set
Vm : Z,z,y : total fns implication
e dn:Z conjunction
o fn_approx(z,y,n)
om<n
e fn_approx(z,y,m).

Lemma B.8 (fn%approx-existence)
Theory: functions-on-a-graded-set
Vz,y : total fns Im:Z _approx(z,y,m).

Lemma B.9 (fn%approx-reflexivity)
Theory: functions-on-a-graded-set
Vm : Z,z : total_fns fn_approx(z,z, m).

Lemma B.10 (fn%approx-symmetry)

Theory: functions-on-a-graded-set

Vm :Z,z,y : total fns s. t. fon_approx(z,y,m),
fn_approx(y, , m).

Theorem B.11 (fn%approx-transitivity)
Theory: functions-on-a-graded-set
Vm :Z,z,z : total_fns implication
e Jy: total_fns conjunction
o fn_approx(z,y, m)
o fn_approx(y, z,m)
e fn_approx(z,z,m).

27

Translation B.12 (degree-equivalence-to-functions-on-a-graded-set)

Source Theory: degree-equivalence

Target Theory: functions-on-a-graded-set
Sort Pairs: P +— total_fns

Constant Pairs: approx — fn_approx

This translation is a theory interpretation.

Under this translation, some constants such as the predicate ”cauchy”
get translated into long-winded expressions, simply because the theory functions-
on-a-graded-set has not yet been viewed as a metric space. We now do this.

(def-theory-ensemble-instances metric-spaces
force-under-quick-load
(target-theories functions-on-a-graded-set functions-on-a-graded-set)
(permutations (0) (0 1))
(theory-interpretation-check using-simplification)
(sorts (pp total’fns totalfns))
(constants (dist fnjdist fnldist)))

Definition B.13 (discrete%lim)
Theory: functions-on-a-graded-set
[s:Z — total_fns +—
[u:U
s(setmin({n:Z|0<nA(Vp,¢:Z (n<pAn<gq)D
fn_approx(s(p), s(q), degree(u)))})) (u)]]-

Theorem B.14 (definedness-of-discrete%lim)

Theory: functions-on-a-graded-set

Vs :Z — total_fns s. t. cauchy(s),
discrete_lim(s) | total fns.

Theorem B.15 (discrete%lim-eventually-constant-property)
Theory: functions-on-a-graded-set
Vs :Z — total_fns s. t. discrete_lim(s) | total_fns,

Vu:U dIm:Z Vp:Z s t. m<p,

s(p)(u) = discrete_lim(s)(u).

Lemma B.16 (cauchy-implies-discrete%lim-is-lim)
Theory: functions-on-a-graded-set

28

Vs:Z — total_fns s. ¢. cauchy(s),
lim s = discrete_lim(s).

Theorem B.17 (completeness-of-total%fns)
Theory: functions-on-a-graded-set
complete.

C The u operator

The p operator associates to each contractive functional its unique fixed
point.

Definition C.1 (mu)
Theory: metric-spaces
[f:P=P —wz:P f(z)=1)]

Definition C.2 (contraction)
Theory: metric-spaces
[f: PP+~
dr: R conjunction
e 0<r
or <1

e Vz,y : P (z € dom{f} ANy € dom{f}) D dist(f(z), f(y)) <
r - dist(z,y) .

Theorem C.3 (iota-free-characterization-of-mu)
Theory: metric-spaces
Vi:P—-P,r:R,z:P s t contraction(f),

=
o u(f) =z
o f(z)==x.

Theorem C.4 (definedness-of-mu-for-contractions)
Theory: metric-spaces
Vf:P—=P,r:R,z:P implication
e conjunction
o complete
o contraction(f)
o total(f, [P — P])

o u(f) L.

29

(def-theory-ensemble-instances

metric-spaces

force-under-quick-load

(permutations (0))

(sorts (pp bfun))

(constants (dist bfunjdist))

(target-theories mappings-into-a-pointed-metric-space)
(special-renamings

(ball bfunjball)

(complete bfun’complete)

(1ipschitz)boundjon bfunilipschitz)boundion)
(1ipschitz¥%bound bfun%lipschitzibound)))

Theorem C.5 (definedness-of-mu-for-contractions-on-functions)
Theory: mappings-into-a-pointed-metric-space
Vf : bfun — bfun implication
e conjunction
o complete
o contraction(f)
o total(f, [bfun — bfun])
o u(f) -

Theorem C.6 (condition-for-contractions-on-function-spaces)
Theory: mappings-into-a-pointed-metric-space
Vf : bfun — bfun implication
e Jk : R conjunction
o 0<k
ock<l1
oV, : bfun,z : indy Jy:indy dist(f(¢)(x), f(¥)(z)) < k-dist(d(y), ¥ (y))

e contraction(f).

30

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]
[9]
[10]

[11]

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of com-
municating sequential processes. JACM, 31(3):560-599, 1984.

J. W. de Bakker and J. I. Zucker. Processes and the denotational
semantics of concurrency. Information and Control, 54:70-120, 1982.

R. DeNicola. Extensional equivalences for transition systems. Acta
Informatica, 24, 1987.

R. DeNicola and M. Hennessy. Testing equivalences for processes. The-
oretical Computer Science, 34, 1984.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories.
In D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of

Lecture Notes in Computer Science, pages 567-581. Springer-Verlag,
1992.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: an Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213—
248, October 1993.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. The IMPS user’s man-
ual. Technical Report M93B-138, The MITRE Corporation, Bedford,
MA, November 1993.

M. Hennessy. Acceptance trees. JACM, 32(4):896-928, 1985.
M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, Englewood Cliffs, NJ, 1985.

E.-R. Olderog and C. A. R. Hoare. Specification-oriented semantics for
communicating processes. Acta Informatica, 23, 1986.

31

