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imps, an Interactive Mathematical Proof System, is intended to provide me-
chanical support for traditional mathematical techniques and styles of practice.
The system consists of a library of axiomatic theories and a collection of tools
for exploring and extending the mathematics embodied in the theory library.
One of the chief tools is a facility for developing formal proofs. imps is equally
well-suited for applications in mathematics education and in the development of
high assurance hardware and software.

The imps system is available without fee (under the terms of a public license)
at the ftp site math.harvard.edu and at the following Web pages:

file://math.harvard.edu/imps/imps html/imps.html
http://www.tiac.net/users/thayer/imps.html

Documentation for the system is also available at the imps ftp site and Web
pages. This includes a substantial user’s manual, a full imps bibliography, and
several imps papers. The principal imps publications are listed below in the
References section. Reference [10] presents an overview of the system.

The imps system has changed little since Version 1.2 was released in July
1994. Since that time, a new graphical user interface has been developed (see
the User Interface section), the theory library has been expanded (see the
Applications section), and a few minor bugs have been fixed.

Distinguishing Characteristics

imps is based on four characteristics of mathematics practice:

– The axiomatic method is the dominant organizing principle in mathematics.
– The development of a piece of mathematics quite often involves many dif-

ferent kinds of mathematical knowledge.
– Functions, including partial and higher-order functions, are widely used to

represent mathematical objects and rules.
– Proofs are a blend of computation and deduction.
? Supported by the MITRE-Sponsored Research program. Published in: M. McRobbie

and J. Slaney, eds., Automated Deduction—CADE-13, Lecture Notes in Computer
Science, Vol. 1104, Springer-Verlag, Berlin, 1996, pp. 298–302.
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Support for the Axiomatic Method. imps emphasizes the “little theories” version
of the axiomatic method, as opposed to the “big theory” version. In the big
theory approach, all reasoning is carried out within one theory—usually some
highly expressive theory, such as the Zermelo-Fraenkel set theory. In the little
theories approach, reasoning is distributed over a network of theories linked by
theory interpretations. Results are typically proved in compact, abstract the-
ories, and then transported as needed to more concrete theories, or indeed to
other equally abstract theories. The theory interpretations provide the mecha-
nism for transporting theorems. The little theories style of the axiomatic method
is employed extensively in mathematical practice; in [9] we discuss its benefits
for mechanized mathematics systems and how the approach is used in imps.

Theory Library. The imps theory library is a collection of theories, theory inter-
pretations, and theory constituents (e.g., definitions and theorems) which serves
as a database of mathematics. Containing a large amount and variety of basic
mathematics, it offers the user a well-developed starting point for developing his
or her own mathematics. It includes formalizations of the real number system
and objects like sets and sequences; theories of abstract mathematical structures
such as groups and metric spaces; and theories to support specific applications
of imps in computer science.

Logic. The imps logic is a nonconstructive version of simple type theory called
lutins

1 [1, 2, 3]. Since partial functions are ubiquitous in both mathematics and
computer science, lutins allows partial functions to be represented directly. As a
consequence, terms like 2/0 may be nondenoting. However, the logic is bivalent:
formulas are either true or false. In particular, the application of a predicate is
false if any of the arguments is nondenoting. The handling of nondenoting terms
in lutins follows an approach common in traditional mathematics; it entails
only small changes in the axioms and rules of classical simple type theory [4].

In lutins, sorts are used to indicate the domain and ranges of partial func-
tions. The denotations of sorts may overlap and are included in the denotations
of types. Thus, for instance, the natural numbers form a subsort of the real num-
bers, and the partial functions from the integers to the rationals form a subsort
of the partial functions from the reals to the reals. Every term is assigned a sort
(and a type). This facilitates machine deduction since the sort of a term gives
some immediate information about its value: a term t has sort α means that, if
t is denoting, the value of t is contained in the denotation of α. Sorts are also
used to restrict the binding operators of lutins such as λ and ∀.

Computation and Deduction. In contrast to the formal proofs described in logic
textbooks, imps proofs are a blend of computation and deduction. Consequently,
they resemble intelligible informal proofs, but unlike informal proofs, all the
details of an imps proof are machine checked. Proofs are constructed interactively
using a natural style of inference based on sequent calculus. imps builds a data
1 Pronounced as the word in French.
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structure which records all the actions and results of a proof attempt. This
object, called a deduction graph, allows the user to survey the proof and to choose
the order in which he or she works on different subgoals. Alternative approaches
may be tried on the same subgoal. Deduction graphs also are suitable for analysis
by software.

Low-level inferences can be performed by two kinds of computation: au-
tomatic expression simplification and semi-automatic theorem application via
procedures called macetes. Both kinds of computation utilize algorithms whose
actions depend on a “local context” of assumptions [12, 17]. High-level infer-
ences are performed by applying proof commands or by executing proof scripts
that apply a sequence of proof commands in an intelligent manner [6]. Proof
commands (and thus proof scripts) may include calls to the simplifier and to
macetes.

User Interface

The imps user interface provides the user with three critical facilities:

– Convenient mechanisms for processing user commands and submitting them
to the imps theory development and theorem proving software.

– The means to present the state of an interactive proof attempt in various
forms: as a graphical display of the corresponding deduction graph, as a
history of events typeset in TEX, and as a script that can be easily edited
and then executed to produce a new deduction graph [6].

– A procedure that, for a given subgoal in a deduction graph, presents to the
user a well-pruned list of the macetes (both inside and outside the home
theory of the deduction graph) that may be applicable to the subgoal.

The user interface is a completely detachable component of imps. In fact,
there are currently two supported interfaces for imps, one written primarily in
Emacs version 19 from the Free Software Foundation, and another graphical
interface written in TCL/Tk. The Emacs interface is documented in the imps

user’s manual [11].
The graphical interface has a number of innovative characteristics which dis-

tinguish it from the Emacs interface. In addition to providing more graphical
cues for input, the new interface has a client-server design which allows imps to
be used over a TCP connection from many hardware platforms. Moreover, this
design allows not only interactive use, but also permits various users at different
locations to work cooperatively on the same problem.

Applications

imps was designed for use in three main areas, namely mathematics, education,
and formal methods. The imps theory library contains a variety of theories to
support these purposes, and some that illustrate how to carry out tasks of these
kinds. Some additional theories were developed purely to support other activities
that we were pursuing.
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Mathematics

The library develops a substantial part of the core of mathematics. A theory of
the real numbers forms the basis for the development and is a building block in
almost all other theories. It axiomatizes the reals as a complete ordered field,
using a second-order axiom to express completeness. The rationals, integers,
and natural numbers are introduced as sorts included within the reals. Since
the theory requires partial functions (such as division), higher-order functions
(such as the limit of a sequence), and recursively defined functions (such as
summation), most of the advantages of lutins are already illustrated in this
theory. The theory of the reals is used to develop theories of metric spaces,
normed spaces, and vector spaces.

Basic facts about divisibility and primes lead to the infinitude of primes,
the fundamental theorem of arithmetic, and the principal ideal theorem for the
integers.

A generic “little theory” of sets, cardinality, and finiteness is widely used by
means of theory interpretations.

Basic calculus is introduced for functions from the reals to an arbitrary
normed space. This includes the mean value theorem for derivatives and in-
tegrals, the fundamental theorem of calculus, and other basic properties of the
derivative and integral. Banach’s fixed-point theorem for contractive mappings
leads to a number of applications, such as an open mapping theorem for map-
pings on a Banach space which are near the identity (see [9]).

A theory of partial orders leads to the Knaster fixed-point theorem and appli-
cations. One application is a conceptually simple proof of the Schröder-Bernstein
theorem. A more traditional proof of the Schröder-Bernstein theorem is devel-
oped elsewhere. The fundamentals of group theory are developed, leading to the
Fundamental Counting Theorem of group theory. Lagrange’s theorem and re-
lated facts are derived from this. A portion of elementary geometry based only
on betweenness leads to a proof of Sylvester’s theorem.

Work related to mathematics education, apart from the material in geometry,
include a variety of exercises illustrating imps’s applicability to learning calculus,
number theory, and aspects of computer science.

Formal Methods

The portion of the theory library devoted to formal methods includes theo-
ries formalizing various notions about state machines. These are used to prove
correctness theorems for aspects of the Mach memory management system, in-
cluding the use of demand-paged virtual memory [16] and the copy-on-write
optimization [19].

The mathematical library was used to good effect in the course of developing a
semantical theory suited for timed CSP [18]. The theory of the reals was extended
to include an abstract theory of machine-representable integers. This became
the basis for a software system [14] for formally analyzing computer programs
(written in a language called PreScheme [7]) that manipulate machine integers.
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This article was processed using the LATEX macro package with LLNCS style
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